尖头碎片撞击小尺寸储罐的模拟实验

陈国华 胡昆 周池楼 祁帅

陈国华, 胡昆, 周池楼, 祁帅. 尖头碎片撞击小尺寸储罐的模拟实验[J]. 爆炸与冲击, 2018, 38(6): 1295-1302. doi: 10.11883/bzycj-2017-0197
引用本文: 陈国华, 胡昆, 周池楼, 祁帅. 尖头碎片撞击小尺寸储罐的模拟实验[J]. 爆炸与冲击, 2018, 38(6): 1295-1302. doi: 10.11883/bzycj-2017-0197
CHEN Guohua, HU Kun, ZHOU Chilou, QI Shuai. Simulation experiment on small-size tank impacted by conical projectiles[J]. Explosion And Shock Waves, 2018, 38(6): 1295-1302. doi: 10.11883/bzycj-2017-0197
Citation: CHEN Guohua, HU Kun, ZHOU Chilou, QI Shuai. Simulation experiment on small-size tank impacted by conical projectiles[J]. Explosion And Shock Waves, 2018, 38(6): 1295-1302. doi: 10.11883/bzycj-2017-0197

尖头碎片撞击小尺寸储罐的模拟实验

doi: 10.11883/bzycj-2017-0197
基金项目: 

国家自然科学基金项目 21576102

国家自然科学基金项目 51705157

中国博士后科学基金项目 2016M602467

中央高校基本科研业务费专项资金项目 2017BQ074

详细信息
    作者简介:

    陈国华(1967-), 男, 博士, 教授

    通讯作者:

    周池楼, mezcl@scut.edu.cn

  • 中图分类号: O389;X937

Simulation experiment on small-size tank impacted by conical projectiles

  • 摘要: 化工园区内,容器爆炸事故易引发多米诺效应,产生的碎片击中临近目标设备或装置可能造成事故后果升级。通过开展尖头碎片撞击小尺寸储罐模拟实验,得到了不同轴向撞击角的尖头碎片撞击不同壁厚小尺寸储罐的穿透形貌、穿透能量以及穿孔直径。结果表明:(1)尖头碎片以0°轴向撞击角穿透罐壁形成的穿孔正面近似圆形,以15°、30°及45°轴向撞击角撞击形成的穿孔正面近似椭圆形且有2个条形翻边,穿孔背面均呈现花瓣型开裂;(2)轴向撞击角越大,壁厚越大,所需的穿透能量越大;(3)轴向撞击角与壁厚对穿孔轴向直径影响显著,但穿孔环向直径变化幅度不大。最后,根据穿甲力学理论和动量守恒定理,推导出适用于0°~45°轴向撞击角的尖头碎片剩余速度理论计算公式。
  • 图  1  尖头碎片撞击小尺寸储罐模拟实验示意图

    Figure  1.  Simulation experiment layout on small-scale tank impacted by conical projectiles

    图  2  7.82 mm尖头碎片结构示意图

    Figure  2.  Conical projectile of 7.82 mm in diameter

    图  3  0°轴向撞击角的尖头碎片穿透壁厚1.0 mm储罐穿孔形貌

    Figure  3.  Morphology of perforation for vertical tank with 1.0 mm wall thickness at axial impact angle equal to 0°

    图  4  30°轴向撞击角的尖头碎片穿透壁厚2.0 mm储罐穿孔形貌

    Figure  4.  Morphology of perforation for vertical tank with 2.0 mm wall thickness at axial impact angle equal to 30°

    图  5  壁厚与穿透能量关系及拟合曲线图

    Figure  5.  Fitted curves showing the relationship between wall thickness and penetration energy

    图  6  碎片轴向撞击角与穿透能量关系图

    Figure  6.  Relationship between axial impact angle and penetration energy

    图  7  穿孔直径与壁厚、轴向撞击角关系图

    Figure  7.  Relationship of perforation diameter with wall thickness and axial impact angle

    图  8  尖头碎片以0°轴向撞击角穿透罐壁示意图

    Figure  8.  Tank wall penetrated by conical projectiles at axial impact angle equal to 0°

    图  9  尖头碎片以非0°轴向撞击角穿透罐壁示意图

    Figure  9.  Tank wall penetrated by conical projectiles at axial impact angle above 0°

    表  1  尖头碎片剩余速度的实验值与理论计算值对比

    Table  1.   Experimentally obtained value and theoretically calculated value of residual velocity of conical projectiles

    实验编号 h/mm θ/(°) vi的实验值/(m·s-1) vr/(m·s-1) 相对误差/%
    实验 理论计算
    1 1.00 0 842 826 825 0.06
    2 1.50 0 853 828 828 0
    3 2.00 0 859 813 826 1.58
    4 2.75 0 840 765 796 4.05
    5 1.00 15 859 842 843 0.17
    6 1.50 15 864 836 841 0.57
    7 2.00 15 859 809 828 2.40
    8 2.75 15 858 779 817 4.82
    9 1.00 30 861 843 843 0
    10 1.50 30 853 819 827 0.97
    11 2.00 30 860 801 825 3.03
    12 2.75 30 859 775 812 4.79
    13 1.00 45 855 836 829 0.79
    14 1.50 45 857 812 819 0.87
    15 2.00 45 863 786 813 3.40
    16 2.75 45 858 761 790 3.91
      注:相对误差为尖头碎片剩余速度的实验值与理论计算值之间的相对误差。
    下载: 导出CSV
  • [1] 穆建春, 乔志宏, 张依芬, 等.自由梁中部在平头子弹横向正冲击下的穿透及变形[J].爆炸与冲击, 2000, 20(3):200-207. DOI: 10.3321/j.issn:1001-1455.2000.03.002.

    MU Jianchun, QIAO Zhihong, ZHANG Yifen, et al. Perforation and deformation of free-free beam by transverse impact of flat-nosed missile at the middle of its span[J]. Explosion and Shock Waves, 2000, 20(3):200-207. DOI: 10.3321/j.issn:1001-1455.2000.03.002.
    [2] PALMER A, NEILSON A, SIVADASAN S. Pipe perforation by medium-velocity impact[J]. International Journal of Impact Engineering, 2006, 32(7):1145-1157. DOI: 10.1016/j.ijimpeng.2004.09.010.
    [3] WANG Y, LEE S C. Experimental study of water tank under impulsive loading[J]. Archives of Civil & Mechanical Engineering, 2015, 15(4):986-996. DOI: 10.1016/j.acme.2014.09.006.
    [4] SUN D, JIANG J, ZHANG M, et al. Ballistic experiments on the mechanism of protective layer against domino effect caused by projectiles[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(3):17-28. DOI: 10.1016/j.jlp.2015.11.020.
    [5] YU H, JEONG D Y. Impact dynamics and puncture failure of pressurized tank cars with fluid-structure interaction:a multiphase modeling approach[J]. International Journal of Impact Engineering, 2016, 90(4):12-25.DOI: 10.1016/j.ijimpeng.2015.11.014.
    [6] 唐恩凌, 施晓涵, 王猛, 等.高速碰撞下圆柱壳自由梁的穿孔特性[J].爆炸与冲击, 2016, 36(8):121-128. DOI: 10.11883/1001-1455(2016)01-0121-08.

    TANG Enling, SHI Xiaohan, WANG Meng, et al. Perforation characteristics of cylindrical shell free beam under high-speed impact[J]. Explosion and Shock Waves, 2016, 36(8):121-128. DOI: 10.11883/1001-1455(2016)01-0121-08.
    [7] 王晓强, 朱锡, 梅志远, 等.低合金船用结构钢抗高速破片能力研究[J].材料工程, 2009, 33(8):1-5.DOI: 10.3969/j.issn.1001-4381.2009.08.001.

    WAMG Xiaoqiang, ZHU Xi, MEI Zhiyuan, et al. Experimental investigation into anti-penetrating capacity of low allow ship hull steel strctures to high velocity steel fragment[J]. Journal of Materials Engineering. 2009, 33(8):1-5. DOI: 10.3969/j.issn.1001-4381.2009.08.001.
    [8] 朱东.大型钢储罐在撞击和爆炸荷载作用下的动力响应分析[D].杭州: 浙江大学, 2016: 22-33. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016264290.htm
    [9] 任会兰, 宁建国.冲击固体力学[M].北京:国防工业出版社, 2013:201-240.
    [10] 邓云飞, 孟凡柱, 李剑锋, 等.Q235钢板对半球形头弹抗侵彻特性[J].爆炸与冲击, 2015, 35(3), 386-392. DOI: 10.11883/1001-1455(2015)03-0386-07.

    DENG Yunfei, MENG Fanzhu, LI Jianfeng, et al. The ballistic performance of Q235 metal plates subjected to impact by hemispherically-nosed projectiles[J]. Explosion and Shock Waves, 2015, 35(3):386-392. DOI: 10.11883/1001-1455(2015)03-0386-07.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4937
  • HTML全文浏览量:  1426
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-12-08
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回