• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

混凝土爆破损伤的SPH-FEM耦合法数值模拟

王志亮 毕程程 李鸿儒

王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟[J]. 爆炸与冲击, 2018, 38(6): 1419-1428. doi: 10.11883/bzycj-2017-0209
引用本文: 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟[J]. 爆炸与冲击, 2018, 38(6): 1419-1428. doi: 10.11883/bzycj-2017-0209
WANG Zhiliang, BI Chengcheng, LI Hongru. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm[J]. Explosion And Shock Waves, 2018, 38(6): 1419-1428. doi: 10.11883/bzycj-2017-0209
Citation: WANG Zhiliang, BI Chengcheng, LI Hongru. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm[J]. Explosion And Shock Waves, 2018, 38(6): 1419-1428. doi: 10.11883/bzycj-2017-0209

混凝土爆破损伤的SPH-FEM耦合法数值模拟

doi: 10.11883/bzycj-2017-0209
基金项目: 

国家自然科学基金项目 51579062

国家自然科学基金项目 51379147

详细信息
    作者简介:

    王志亮(1969-), 男, 博士, 教授, cvewzL@hfut.edu.cn

  • 中图分类号: O385

Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm

  • 摘要: 为了提高计算效率以及更好展现爆炸荷载下混凝土破坏过程,采用SPH-FEM耦合法对混凝土爆破成坑进行模拟。首先结合前人给出的C30混凝土Holmquist-Johnson-Cook(HJC)部分本构参数,通过理论推导等方法确定出剩余的参数;然后代入模型中计算,将数值解与实测数据进行对比;最后以峰值压力和峰值加速度作为考察对象,对HJC模型中21个参数敏感性进行分析。结果表明:SPH-FEM耦合法能直观地模拟爆炸荷载作用下爆坑的发展全过程,且能够较好地处理SPH边界问题;基于所给出的C30混凝土HJC本构参数,采用SPH-FEM耦合法对混凝土爆破破坏进行模拟,计算结果与实测数据吻合度高,表明HJC本构参数的确定具有合理性。此外,还发现HJC本构参数对爆破问题结果的敏感度各不相同,指出对峰值压力和峰值加速度均有较大影响的参数在确定的时候需引起足够的重视。
  • 图  1  粒子近似法

    Figure  1.  Particle approximation method

    图  2  节点与面之间接触

    Figure  2.  Contact between nodes and surfaces

    图  3  状态方程

    Figure  3.  Eequation of state

    图  4  损伤模型

    Figure  4.  Damage model

    图  5  物理模型(单位:cm)

    Figure  5.  Physical model (unit: cm)

    图  6  计算模型

    Figure  6.  Calculation model

    图  7  建模过程

    Figure  7.  Modeling process

    图  8  爆坑形成过程

    Figure  8.  Process of blast crater formation

    图  9  各测点压力时程曲线

    Figure  9.  Pressure-time curves at different measuring points

    图  10  各测点加速度时程曲线

    Figure  10.  Acceleration-time curves at different measuring points

    图  11  峰值压力对HJC参数敏感性分析

    Figure  11.  Sensitivity analysis of peak pressure for HJC parameters

    图  12  峰值加速度对HJC参数敏感性分析

    Figure  12.  Sensitivity analysis of peak acceleration for HJC parameters

    表  1  C30混凝土HJC参数

    Table  1.   HJC parameters of C30 concrete

    ρ0/(kg·m-3) fc/MPa A B C Smax G/GPa T/MPa D1 D2
    2 400 39.2 1.05 1.65 0.007 7 13.89 3.162 0.04 1
    Pcrush/MPa μcrush Plock/GPa μlock K1/GPa K2/GPa K3/GPa EFmin N FS
    13.07 0.000 7 0.8 0.1 85 -171 208 0.01 0.76 1.34
    下载: 导出CSV

    表  2  不同测点处计算结果与实测结果对比

    Table  2.   Comparison between calculated results and measured results at different test points

    测点 比例距离
    Z/(m·kg-1/3)
    峰值压力Pm/MPa 峰值加速度am/(m·s-2)
    实测 计算 误差/% 实测 计算 误差/%
    1 0.255 95.29 93.81 -1.55 63.85×104 59.13×104 -7.39
    2 0.515 26.81 24.43 -8.88 12.20×104 11.04×104 -9.51
    3 0.810 11.77 13.16 11.81 4.01×104 5.32×104 32.83
    4 1.256 4.82 4.90 1.66 1.53×104 1.75×104 14.49
    5 1.879 2.56 2.58 0.78 0.74×104 0.84×104 13.82
    6 2.504 1.59 1.63 2.52 0.32×104 0.38×104 17.83
    下载: 导出CSV

    表  3  参数敏感度

    Table  3.   Parameter sensitivit

    敏感度 ρ fc A B C Smax G T D1 D2 Pcrush μcrush Plock μlock K1 K2 K3 EFmin N FS
    Pm的敏感度S 0.558 0 0.612 0 0.462 4 0.499 3 0.161 8 0.049 2 1.298 8 0.006 2 0.006 2 0.314 4 1.000 1 0.623 4 0.521 5 0.799 7 0.209 5 0.236 0 0.218 4 0.010 3 0.765 5 0.000 0
    am的敏感度S 0.344 2 0.633 7 0.263 3 0.293 3 0.132 2 0.085 8 0.354 6 0.035 8 0.005 9 0.209 5 0.182 9 0.768 8 0.514 6 1.459 0 0.194 3 0.075 6 0.067 5 0.012 1 0.050 4 0.000 0
    下载: 导出CSV
  • [1] 韩旭, 杨刚, 强洪夫.光滑粒子流体动力学一种无网格粒子法[M].长沙:湖南大学出版社, 2005.
    [2] 胡英国, 卢文波, 陈明, 等.SPH-FEM耦合爆破损伤分析方法的实现与验证[J].岩石力学与工程学报, 2015, 34(增刊1):2740-2748. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSLX2015S1019&dbname=CJFD&dbcode=CJFQ

    HU Yingguo, LU Wenbo, CHEN Ming, et al. Implementation and verification of SPH-FEM coupling blasting damage analytical method[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(suppl 1):2740-2748. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSLX2015S1019&dbname=CJFD&dbcode=CJFQ
    [3] 王维国, 陈育民, 刘汉龙, 等.基于SPH-FEM耦合法的土体爆炸效应数值研究[J].岩土力学, 2013, 34(7):2104-2110. http://d.old.wanfangdata.com.cn/Periodical/ytlx201307041

    WANG Weiguo, CHEN Yumin, LIU Hanlong, et al. Numerical simulation of explosion in soil based on a coupled SPH-FEM algorithm[J]. Rock and Soil Mechanics, 2013, 34(7):2104-2110. http://d.old.wanfangdata.com.cn/Periodical/ytlx201307041
    [4] 崔溦, 宋慧芳, 张社荣.土中爆炸作用下箱涵动力响应的SPH-FE耦合分析[J].爆炸与冲击, 2012, 32(5):551-556. doi: 10.3969/j.issn.1001-1455.2012.05.017

    CUI Wei, SONG Huifang, ZHANG Sherong. Coupled SPH-FE analysis for dynamic response of box culvert subjected to subsurface blast[J]. Explosion and Shock Waves, 2012, 32(5):551-556. doi: 10.3969/j.issn.1001-1455.2012.05.017
    [5] LU Y, WANG Z Q, CHONG K. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(4):275-288. doi: 10.1016/j.soildyn.2005.02.007
    [6] KONESHWARAN S, THAMBIRATNAM D P, Gallage C. Blast response of segmented bored tunnel using coupled SPH-FE method[J]. Structures, 2015, 2:58-71. doi: 10.1016/j.istruc.2015.02.001
    [7] VUYST T D, VIGNJEVIC R, Campbell J C. Coupling between meshless and finite element methods[J]. International Journal of Impact Engineering, 2005, 31(8):1054-1064. doi: 10.1016/j.ijimpeng.2004.04.017
    [8] 杨刚, 胡德安, 韩旭.混凝土中爆炸模拟的数值方法比较[J].应用力学学报, 2011, 28(4):423-426. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201104020

    YANG Gang, HU Dean, HAN Xu. Comparison study of numerical methods in simulation of explosion in concretes[J]. Chinese Journal of Applied Mechanics, 2011, 28(4):423-426. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201104020
    [9] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[C]//14th International Symposium on Ballistic, Quebec City, Canada, 1993: 593-600.
    [10] 方秦, 孔祥振, 吴昊, 等.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htm

    FANG Qin, KONG Xiangzhen, WU Hao, et al. Determination of Holmquist-Johnson-Cook constitutive model parameters of rock[J]. Engineering Mechanics, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htm
    [11] 孙其然, 李芮宇, 赵亚运, 等.HJC模型模拟钢筋混凝土侵彻实验的参数研究[J].工程力学, 2016, 33(8):248-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201608032.htm

    SUN Qiran, LI Ruiyu, ZHAO Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete[J]. Engineering Mechanics, 2016, 33(8):248-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201608032.htm
    [12] 陈睿, 刘杰, 韩旭, 等.混凝土材料动态本构参数的分阶段计算反求技术[J].爆炸与冲击, 2014, 34(3):315-321. http://www.bzycj.cn/CN/abstract/abstract8845.shtml

    CHEN Rui, LIU Jie, HAN Xu, et al. A multi-stage computational inverse technique for identification of the dynamic constitutive parameters of concrete[J]. Explosion and Shock Waves, 2014, 34(3):315-321. http://www.bzycj.cn/CN/abstract/abstract8845.shtml
    [13] 熊益波, 陈剑杰, 胡永乐.混凝土Johnson-Holmquist本构模型灵敏参数的初步确认[J].兵工学报, 2009, 30(增刊2):145-148. http://d.old.wanfangdata.com.cn/Conference/7151852

    XIONG Yibo, CHEN Jianjie, HU Yongle. Preliminary identification of sensitive parameters in Johnson-Holmquist concrete constitutive model[J]. Acta Armamentarii, 2009, 30(suppl 2):145-148. http://d.old.wanfangdata.com.cn/Conference/7151852
    [14] 闻磊, 李夕兵, 吴秋红, 等.花岗斑岩Holmquist-Johnson-Cook本构模型参数研究[J].计算力学学报, 2016, 33(5):725-731. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201605011

    WEN Lei, LI Xibing, WU Qiuhong, et al. Study on parameters of Holmquist-Johnson-Cook model for granite porphyry[J]. Chinese Journal of Computational Mechanics, 2016, 33(5):725-731. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201605011
    [15] 巫绪涛, 孙善飞, 李和平.用HJC本构模型模拟混凝土SHPB实验[J].爆炸与冲击, 2009, 29(2):137-142. http://www.bzycj.cn/CN/abstract/abstract8903.shtml

    WU Xutao, SUN Shanfei, LI Heping. Numerical simulation of SHPB tests for concrete by HJC model[J]. Explosion and Shock Waves, 2009, 29(2):137-142. http://www.bzycj.cn/CN/abstract/abstract8903.shtml
    [16] 纪冲, 龙源, 方向.基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J].振动与冲击, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015

    JI Chong, LONG Yuan, FANG Xiang. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm[J]. Journal of Vibration and Shock, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015
    [17] 梁超.三维FE-SPH自适应耦合方法在混凝土侵彻问题中的应用[D].长沙: 湖南大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10532-1014168431.htm
    [18] LS-DYNA keyword user' manual[Z]. Version 971, Livermore Software Technology Corporation, 2007.
    [19] 施绍裘, 王永忠, 王礼立.国产C30混凝土考虑率型微损伤演化的改进Johnson-Cook强度模型[J].岩石力学与工程学报, 2006, 25(增刊1):3250-3257. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1102

    SHI Shaoqiu, WANG Yongzhong, WANG Lili. Improved Johnson-Cook's strength model taking account of rate-dependent micro-damage evolution for domestic C30 concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(suppl 1):3250-3257. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1102
    [20] 穆朝民, 任辉启, 石必明.变埋深条件下混凝土中爆炸加速度的传播规律[J].振动与冲击, 2016, 35(3):1-6. http://d.old.wanfangdata.com.cn/Periodical/zdycj201603003

    MU Chaomin, REN Huiqi, SHI Biming. Investigation on the shock acceleration of concrete at different depths of burst[J]. Journal of Vibration and Shock, 2016, 35(3):1-6. http://d.old.wanfangdata.com.cn/Periodical/zdycj201603003
    [21] 高轩能, 吴彦捷.TNT爆炸的数值计算及其影响因素[J].火炸药学报, 2015, 38(3):32-39. http://d.old.wanfangdata.com.cn/Periodical/hzyxb201503006

    GAO Xuanneng, WU Yanjie. Numerical calculation and influence parameters for TNT explosion[J]. Chinese Journal of Explosives and Propellants, 2015, 38(3):32-39. http://d.old.wanfangdata.com.cn/Periodical/hzyxb201503006
    [22] WANG J. Simulation of landmine explosion using LS-dyna3d software: Benchmark work of simulation of explosion in soil and air[R]. Australia: Weapons Systems Division Aeronautical and Maritime Research Laboratory, 2001.
    [23] 李重情, 穆朝民, 石必明.变埋深条件下混凝土中爆炸应力传播规律的研究[J].振动与冲击, 2017, 36(6):140-145. http://d.old.wanfangdata.com.cn/Periodical/zdycj201706021

    LI Zhongqing, MU Chaomin, SHI Biming. Investigation on the shock stress propagation in concrete at different depths under blasting[J]. Journal of Vibration and Shock, 2017, 36(6):140-145. http://d.old.wanfangdata.com.cn/Periodical/zdycj201706021
    [24] 王志亮, 王建国, 李永池.单临空面岩体中爆破诱发损伤的数值分析[J].岩土力学, 2006, 27(2):219-223. http://d.old.wanfangdata.com.cn/Periodical/ytlx200602010

    WANG Zhiliang, WANG Jianguo, LI Yongchi. Numerical analysis of blast-induced damage in rock mass with single free-face[J]. Rock and Soil Mechanics, 2006, 27(2):219-223. http://d.old.wanfangdata.com.cn/Periodical/ytlx200602010
  • 期刊类型引用(26)

    1. 韦文蓬, 吴永宏, 韦守东, 冯玉君, 李伟, 农军年, 李庆华, 覃初礼, 张鹏, 李兆谊, 叶海旺, 霍晓锋. 大直径深孔精确短延时侧崩爆破裂纹扩展规律. 有色金属(矿山部分). 2025(04) 百度学术
    2. 单仁亮, 戴其航, 梁俊奇, 顿志博. 基于砂岩SHPB试验的HJC模型参数研究. 防护工程. 2025(03) 百度学术
    3. 纪曲波,刘仍兵,万安桐. 基于数值模拟的爆破作用下围岩累计损伤监测方法. 工程爆破. 2025(02): 65-74 . 百度学术
    4. 赵瑜,付乔峰,曹克磊,张建伟,汤长兴. 波纹钢厚度对复合结构损伤特性及抗爆性能的影响. 水电能源科学. 2024(02): 47-51+133 . 百度学术
    5. 孙鹏昌,杨广栋,卢文波,范勇,孟海利,薛里. 考虑岩体破坏分区的岩石爆破爆炸荷载历程研究. 爆炸与冲击. 2024(03): 171-186 . 本站查看
    6. 段继超,宗琦,汪海波,王浩. 起爆顺序对台阶岩石破碎块度及爆破振动影响研究. 中国安全科学学报. 2024(02): 192-199 . 百度学术
    7. 师文强,王思杰,杜文秀,宝音吉雅,杨旭,龚敏,高宇航. 基于SPH-FEM耦合算法的台阶精准爆破延期时间研究及应用. 金属矿山. 2024(05): 210-219 . 百度学术
    8. 张景丽. 爆破荷载损伤下喷射混凝土孔隙结构及三轴力学性能试验研究. 金属矿山. 2024(06): 38-45 . 百度学术
    9. 宁鹏博,刘军,赵硕,李瑶. 钢纤维增强混凝土动态力学性能及HJC本构模型参数标定. 中国建材科技. 2024(03): 20-25 . 百度学术
    10. 叶志伟,陈明,杨建华,姚池,张小波,周创兵. 隧道爆破炮孔堵塞结构运动规律与长度优化研究. 中国公路学报. 2024(08): 204-215 . 百度学术
    11. 卢文波,孟婷,胡英国. 岩石爆破破碎模拟和块度预报的研究现状与展望. 工程爆破. 2024(05): 20-28 . 百度学术
    12. 孙玉玲,梁汉良,朱建生,马宏昊,王鲁庆,张冰原,罗宁,沈兆武. 热熔爆炸焊接W/CuCrZr界面特征及其演化机理(英文). 稀有金属材料与工程. 2024(11): 3077-3083 . 百度学术
    13. 李洪超,张继,王富旗,刘轩泽,梁瑞,张智宇,王凯,王樨尧,张坤麟. 花岗岩RHT模型部分参数确定研究. 材料导报. 2024(S2): 292-297 . 百度学术
    14. 应迪通,张彦春. 基于LS-PrePost的不同形状装药爆炸仿真研究. 刑事技术. 2023(01): 76-82 . 百度学术
    15. 宋帅,杜闯,李艳艳. 超高性能混凝土HJC本构模型参数确定及应用. 爆炸与冲击. 2023(05): 57-69 . 本站查看
    16. 周阳威,蒋志明,邓琛,张庆彬,胡敏,于永纯. 环向切缝管聚能射流的数值模拟. 工程爆破. 2023(02): 1-9 . 百度学术
    17. 陈一曦,钟明寿,刘影,谢兴博,张宇鹏. 平行掏槽孔内延时爆破技术的SPH-FEM数值模拟. 工程爆破. 2023(03): 55-62 . 百度学术
    18. 黄杰,李明鸿,吴拓展,宗周红. 钙质砂场地爆炸成坑实验与数值模拟研究. 爆炸与冲击. 2023(10): 30-45 . 本站查看
    19. 程兵,汪海波,汪泉,宗琦,李洪伟. SPH-FEM耦合法数值模拟在工程爆破教学中的应用研究. 实验技术与管理. 2023(10): 100-105 . 百度学术
    20. 娄乾星,陶铁军,田兴朝,谢财进. 基于HJC本构模型的石灰岩冲击破坏形态数值模拟方法研究. 爆破. 2022(04): 71-79 . 百度学术
    21. 任会兰,荣誉,许香照. 弹体贯穿混凝土数值模拟的改进材料模型. 爆炸与冲击. 2022(11): 79-91 . 本站查看
    22. 荣凯,杨军,陈占扬. 土介质挡墙对爆炸冲击波衰减规律研究. 工程爆破. 2021(06): 1-8 . 百度学术
    23. 程兵,汪海波,宗琦. 基于SPH-FEM耦合法切缝药包爆破机理数值模拟. 含能材料. 2020(04): 300-307 . 百度学术
    24. 杨建华,孙文彬,姚池,张小波. 高地应力岩体多孔爆破破岩机制. 爆炸与冲击. 2020(07): 118-127 . 本站查看
    25. 石恒,王志亮,石高扬,郝士云. 实时温度下花岗岩动态压缩破坏特性试验与数值研究. 岩土工程学报. 2019(05): 836-845 . 百度学术
    26. 宗琦,程兵,汪海波. 偏心不耦合装药孔壁压力与损伤效应数值模拟. 爆破. 2019(03): 76-83 . 百度学术

    其他类型引用(35)

  • 加载中
推荐阅读
循环爆破作用下锁固型岩质边坡的累积损伤效应及稳定性分析
刘康琦 等, 爆炸与冲击, 2025
钢纤维增强多孔混凝土板水下接触爆炸防爆机理及损伤等级预测
汤长兴 等, 爆炸与冲击, 2025
隧道表面爆破地震波的产生机制及传播特征
蒙贤忠 等, 爆炸与冲击, 2024
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
基于sph方法的钢筋混凝土切削模拟研究
谭松成 等, 金刚石与磨料磨具工程, 2023
双孔爆破的损伤破坏和分形研究
霍飞 等, 高压物理学报, 2025
高地应力下岩体的爆破损伤及能量特性
梁瑞 等, 高压物理学报, 2022
What are conspiracy theories? a definitional approach to their correlates, consequences, and communication
Douglas, Karen M., ANNUAL REVIEW OF PSYCHOLOGY, 2023
Research on simpliffied evaluation method for soil-rock mixed slope stability under dam-break flood impact
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2025
In-situtomography on damage evolution of solid propellant under dynamic loading
YUAN Yongxiang et al., EXPLOSION AND SHOCK WAVES, 2025
Powered by
图(12) / 表(3)
计量
  • 文章访问数:  5092
  • HTML全文浏览量:  1565
  • PDF下载量:  101
  • 被引次数: 61
出版历程
  • 收稿日期:  2017-06-16
  • 修回日期:  2017-09-23
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回