多破片高速冲击下飞机油箱水锤效应数值模拟

韩璐 韩庆 杨爽

韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230
引用本文: 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230
HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230
Citation: HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230

多破片高速冲击下飞机油箱水锤效应数值模拟

doi: 10.11883/bzycj-2017-0230
详细信息
    作者简介:

    韩璐(1988-), 女, 博士研究生, hanlu1119@mail.nwpu.edu.cn

  • 中图分类号: O385;V221.91

Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact

  • 摘要: 作为飞机燃油箱的一种主要损伤模式,水锤效应可能引起油箱结构灾难性的破坏。针对实战环境中多枚破片冲击同一油箱的常见现象,在建立与试验对比一致的单枚破片冲击满水油箱数值模型后,以箱内液体特定单元压力峰值、破片速度衰减、箱内液体吸收的总能量以及油箱壁板变形作为对比参量,分别开展数值模拟,分析其在2枚破片不同间距打击、2枚破片不同时间间隔打击以及多枚破片同时打击时的水锤效应。结果表明:箱内液体的压力峰值来源于破片入水后形成的冲击波,多枚破片入射时液体压力有明显的叠加效应;2枚破片不同时入射将导致先入射破片剩余速度增高;油箱壁板的变形随入射破片数量的增加显著增大。
  • 图  1  有限元模型

    Figure  1.  The finite element model

    图  2  试验模型简图[10]

    Figure  2.  Diagram of experimental model[10]

    图  3  压力-时间历程对比

    Figure  3.  Comparison of pressure-time histories

    图  4  空穴形成过程对比

    Figure  4.  Formation processes of fuel tank cavities

    图  5  多破片打击位置方案

    Figure  5.  Multi-fragment combat options

    图  6  多破片打击下液体压力-时间历程

    Figure  6.  Pressure-time history in fliud under multi-fragment impact

    图  7  多破片同时入射时的破片速度-时间历程

    Figure  7.  Fragment velocity-time histories under multi-fragment impact

    图  8  多破片同时入射时液体吸收的总能量

    Figure  8.  Total energy absorbed by fluid under multi-fragment impact

    图  9  多破片同时入射时壁板的变形

    Figure  9.  Deformation of entry and exit walls under multi-fragment impact

    图  10  2枚破片以不同间距同时入射时箱内液体的压力-时间历程

    Figure  10.  Pressure-time histories of fluid in the tank under simultaneous impact of two fragments with different spaces

    图  11  不同间距同时入射时破片速度-时间历程

    Figure  11.  Fragment velocity-time histories in the case of simultaneous impact with different spaces

    图  12  2枚破片以不同间距同时入射时液体吸收总能量

    Figure  12.  Evolution of total energy absorbed by fluid in the tank under simultaneous impact of two fragments with different spaces

    图  13  2枚破片以不同间距同时入射时入射、出射壁板的变形情况

    Figure  13.  Deformation of entry and exit walls under simultaneous impact of two fragments with different spaces

    图  14  破片以不同的时间间隔入射时箱内液体的压力-时间历程

    Figure  14.  Pressure-time histories of fluid in the tank under impact of two fragments with different time intervals

    图  15  不同入射时间间隔下破片速度-时间历程

    Figure  15.  Fragment velocity-time histories in the case of the impact of different time intervals

    图  16  不同入射时间间隔下液体吸收的总能量-时间历程

    Figure  16.  Total energy absorbed by fluid varying with time in the case of the impact of different time intervals

    图  17  入射和出射壁板在2枚破片以不同时间间隔冲击时的变形情况

    Figure  17.  Deformation of entry and exit walls impacted by two fragments at different time intervals

    表  1  箱体、破片材料模型参数[2]

    Table  1.   Material parameters of walls and fragments[2]

    材料 ρ/(kg·m-3) E/GPa ν A/MPa B/MPa n C m D1
    6063-T5 2 700 71 0.33 200 144 0.62 0 1 0.2
    7 830 207 0.28
    PMMA 1 180 3 0.35
    下载: 导出CSV

    表  2  水、空气材料模型参数[2]

    Table  2.   Material parameters of water and air[2]

    材料 ρ0 /(kg·m-3) νd/(Pa·s) c/(m·s-1) S1 S2 S3 γ0 a C4 C5
    1 000 0.89×10-3 1 448 1.979 0 0 0.11 3.0
    空气 1.22 1.77×10-5 0.4 0.4
    下载: 导出CSV
  • [1] BALL R E. The fundamentals of aircraft combat survivability:Analysis and design[M]. 2nd ed. Reston, Virginia:AIAA Education, 2003:667-668. DOI: 10.2514/4.862519.
    [2] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. DOI: 10.1016/j.ijimpeng.2008.07.020.
    [3] 刘国繁, 陈照峰, 王永健, 等.飞机油箱水锤效应研究方法及进展[J].航空工程进展, 2014, 5(1):1-6.DOI: 10.16615/j.cnki.1674-8190.2014.01.007.

    LIU Guofan, CHEN Zhaofeng, WANG Yongjian, et.al. Research methods and progress of the hydrodynamic ram effect of aircraft fuel tanks[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):1-6. DOI: 10.16615/j.cnki.1674-8190.2014.01.007.
    [4] BALL R E. Structural response of fluid containing tanks to penetrating projectiles (hydraulic ram): a comparison of experimental and analytical results: NPS-57BP76051[R]. Monterey, California: Naval Postgraduate School, 1976.
    [5] PATTERSON J W. Fuel cell pressure loading during hydraulic ram[D]. Monterey, California: Naval Postgraduate School, 1975.
    [6] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016. DOI: 10.1016/j.ijimpeng.2005.06.010.
    [7] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829. DOI: 10.1016/j.ijimpeng.2008.12.009.
    [8] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10):2598-2609. DOI: 10.1016/j.compstruct.2011.04.025.
    [9] VARAS D, ZAERA D, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and Technology, 2012, 16(1):19-28. DOI: 10.1016/j.ast.2011.02.003.
    [10] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminum tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. DOI: 10.1016/j.ijimpeng.2008.04.006.
    [11] SANTINI P, PALMIERI D, MARCHETTI M. Numerical simulation of fluid-structure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration[C]//1st ICAS Congress. Melbourne, Australia, 1998: ICAS-98-4. 3. 1. DOI: 10.1016/j.ijimpeng.2008.07.020.
    [12] JR ANDERSON C E, SHARRON T R, WALKER J D, et al. Simulation and analysis of a 23-mm HEI projectile hydrodynamic ram experiment[J]. International Journal of Impact Engineering, 1999, 22(9):981-997. DOI: 10.1016/S0734-743X(99)00046-9.
    [13] SPARKS C E, HINRICHSEN R L, FRIEDMANN D. Comparison and validation of smooth particle hydrodynamics (SPH) and coupled Euler Lagrange (CEL) techniques for modeling hydrodynamic ram[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA, 2013: 2005-2331. DOI: 10.2514/6.2005-2331.
    [14] VIGNJEVIC R, DEVUYST T, CAMPBELL J C, et al. Modelling of impact on a fuel tank using smoothed particle hydrodynamics[C]//5th Conference on Dynamics and Control of Systems and Structures in Space (DCSSS). Cambridge, UK, 2002.
    [15] 李亚智, 陈钢.充液箱体受破片撞击下动态响应的数值模拟[J].机械强度, 2007, 29(1):143-147.DOI: 10.3321/j.issn:1001-9669.

    LI Yazhi, CHEN Gang. Numerical simulation of liquid-filled tank response to projectile impact[J]. Journal of Mechanical Strength, 2007, 29(1):143-147. DOI: 10.3321/j.issn:1001-9669.
    [16] 陈钢. 高速破片冲击下油箱动态响应的数值模拟[D]. 西安: 西北工业大学, 2005: 36-52. DOI: 10.7666/d.y843974.
    [17] AZIZ M R, KUNTJORO W, DAVID N V. Numerical modeling of the ballistic limit in the hydrodynamic ram[J]. Journal Teknologi (Sciences & Engineering), 2015, 76(8):43-47. DOI: 10.11113/jt.v76.5622.
    [18] CHEN Long, SONG Bifeng, PEI Yang. Simulation analysis of hydrodynamic ram phenomenon in composite fuel tank to fragment impact[J]. Chinese Science Bulletin, 2011, 56(30):3148-3154. DOI: 10.1109/ICMTMA.2011.631.
    [19] HEIMB S, DUWENSEE T, NOGUEIRA A C, et al. Hydrodynamic ram analysis of aircraft fuel tank with different composite T-joint designs[C]//WIT Transactions on the Built Environment on Structures under Shock and Impact, 2014, 141(13): 279-288. DOI: 10.2495/SUSI140241.
    [20] BANERJEE A, DHAR S, ACHARYYA S, et al. Determination of Johnson-Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel[J]. Materials Science and Engineering, 2015, 640:200-209. DOI: 10.1016/j.msea.2015.05.073.
    [21] 李晓杰, 姜力, 赵铮, 等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击, 2008, 28(1):57-61.DOI: 10.3321/j.issn:1001-1455.2008.01.010.

    LI Xiaojie, JIANG Li, ZHAO Zheng, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate[J]. Explosion and Shock Waves, 2008, 28(1):57-61. DOI: 10.3321/j.issn:1001-1455.2008.01.010.
    [22] CORONA E, ORIENT G E. An evaluation of the Johnson-Cook model to simulate puncture of 7075 aluminum plates[R]. Sandia National Laboratories, 2014. DOI: 10.2172/1204105.
    [23] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10):723-733.DOI: 10.1016/j.ijimpeng.2003.10.019.
    [24] CHEN S, CHOU P. Hypervelocity impact of bumper-protected fuel tanks[J]. Journal of Spacecraft and Rockets, 1970, 7(12):1412-1418. DOI: 10.2514/3.30183.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  5612
  • HTML全文浏览量:  1372
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-09-02
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回