环缝宽度对旋转爆震发动机工作特性的影响

徐灿 邓利 马虎 余陵

徐灿, 邓利, 马虎, 余陵. 环缝宽度对旋转爆震发动机工作特性的影响[J]. 爆炸与冲击, 2019, 39(3): 032102. doi: 10.11883/bzycj-2017-0248
引用本文: 徐灿, 邓利, 马虎, 余陵. 环缝宽度对旋转爆震发动机工作特性的影响[J]. 爆炸与冲击, 2019, 39(3): 032102. doi: 10.11883/bzycj-2017-0248
XU Can, DENG Li, MA Hu, YU Ling. Annular gaps width effecting on performance of rotating detonation engine[J]. Explosion And Shock Waves, 2019, 39(3): 032102. doi: 10.11883/bzycj-2017-0248
Citation: XU Can, DENG Li, MA Hu, YU Ling. Annular gaps width effecting on performance of rotating detonation engine[J]. Explosion And Shock Waves, 2019, 39(3): 032102. doi: 10.11883/bzycj-2017-0248

环缝宽度对旋转爆震发动机工作特性的影响

doi: 10.11883/bzycj-2017-0248
详细信息
    作者简介:

    徐 灿(1993- ),女,硕士研究生,1574399083@qq.com

    通讯作者:

    马 虎(1986- ),男,博士,副教授,mahuokok@163.com

  • 中图分类号: O383; V235.22

Annular gaps width effecting on performance of rotating detonation engine

  • 摘要: 为研究环缝宽度对旋转爆震发动机(rotating detonation engine, RDE)工作特性的影响,在非预混RDE中进行实验,同时采用高频压力传感器、离子探针和高速摄影等测量设备,在同一入口质量流率的条件下,改变空气进气环缝宽度和燃烧室环缝宽度。获得了单波、双波、四波对撞及混合传播模态;当燃烧室环缝宽6 mm时,增加空气进气环缝宽度,爆震波由四波对撞转变为同向双波,最终以单波形式传播;而燃烧室环缝宽10或15 mm时,空气进气环缝宽度对爆震波传播模态的影响较小;此外,四波对撞模态下,爆震波压力峰值和离子信号峰值低于单波和双波模态时的值。
  • 图  1  实验系统示意图

    Figure  1.  Schematic of the experiment system

    图  2  RDE结构

    Figure  2.  Structure of RDE

    图  3  单波、双波、四波对撞模态示意图

    Figure  3.  The diagram of single wave (SW), double wave (DW) and four wave collision (FWC)

    图  4  RDE工作过程压力信号曲线

    Figure  4.  Curves of pressure signal during RDE working process

    图  5  高频压力信号时程曲线

    Figure  5.  Histories of High frequency pressure signals

    图  6  短时傅里叶变换结果

    Figure  6.  Short-time Fourier transform result

    图  7  I1I2点信号时程曲线

    Figure  7.  Histories of signals at I1 and I2 points

    图  8  I1信号全程工作下的过程

    Figure  8.  The whole working process of I1 signal

    图  9  高速摄影图片

    Figure  9.  High speed photography

    图  10  高频压力信号时程曲线

    Figure  10.  Histories of High frequency pressure signals

    图  11  短时傅里叶变换结果

    Figure  11.  Short-time Fourier transform result

    图  12  I1I2点信号时程曲线

    Figure  12.  Histories of signals at I1 and I2 points

    图  13  I1信号全程工作过程

    Figure  13.  The whole working process of I1 signal

    图  14  高速摄影图片

    Figure  14.  High speed photography

    图  15  高频压力信号时程曲线

    Figure  15.  Histories of High frequency pressure signals

    图  16  短时傅里叶变换结果

    Figure  16.  Short-time Fourier transform result

    图  17  I1I2点信号时程曲线

    Figure  17.  Histories of signals at I1 and I2 points

    图  18  I1全程工作过程

    Figure  18.  The whole working process of I1 signal

    图  19  高速摄影图片

    Figure  19.  High speed photography

    图  20  单双波交替下的压力曲线

    Figure  20.  Pressure signals of SW and DW alternation

    图  21  对撞时的压力曲线

    Figure  21.  Pressure signals of collision

    图  22  高频压力信号时程曲线

    Figure  22.  High frequency pressure signals

    图  23  傅里叶变换结果

    Figure  23.  Fourier transform result

    表  1  实验参数及结果

    Table  1.   Experimental parameters and results

    工况δ/mmw/mmΦ/(g·s−1·mm−2)p(H2)/MPap(air)/MPa传播状态fd/Hzpc/MPa
    11.060.1181.0100.498四波对撞4 6990.056
    21.560.1181.0100.234同向双波5 0570.058
    32.060.1181.0100.111单波2 9890.047
    41.0100.0721.0100.368同向双波/对撞4 829/3 6710.027
    51.5100.0721.0340.185单双波交替/对撞3 427/4 4770.036
    62.0100.0721.0100.094单双波交替/对撞3 319/4 3730.033
    71.0150.0491.0100.366四波对撞4 6580.020
    81.5150.0491.0100.156四波对撞4 5180.016
    92.0150.0491.0100.073四波对撞4 5800.024
    下载: 导出CSV
  • FOTIA M L, HOKE J, SCHAUER F. Experimental study of the ignition process in rotating detonation engines: AIAA, 2017-1928 [R]. USA: AIAA, 2017.
    BYKOVSKII F A, VEDEMIKOV E F, POLOZOV S V, et al. Initiation of detonation in flows of fuel-air mixtures [J]. Combustion, Explosion, and Shock Waves, 2007, 43(3): 345–354. doi: 10.1007/s10573-007-0048-8
    周蕊, 李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究 [J]. 航空学报, 2016, 37(12): 3668–3674 doi: 10.7527/S1000-6893.2016.0108

    ZHOU Rui, LI Xiaopeng. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3668–3674 doi: 10.7527/S1000-6893.2016.0108
    NAPLES A, HOKE J, KARNESKY J, et al. Flowfield characterization of a rotating detonation engine: AIAA, 2013-0278 [R]. USA: AIAA, 2013.
    BYKOVSKII F A, ZHDAN S A, VEDEMIKOV E F. Continuous spin detonation of fuel-air mixtures [J]. Combustion, Explosion, and Shock Waves, 2006, 42(4): 463–471. doi: 10.1007/s10573-006-0076-9
    BYKOVSKII F A, MITROFANOV V V, VEDEMIKOV E F. Continuous detonation combustion of fuel-air mixtures [J]. Combustion, Explosion, and Shock Waves, 1997, 33(3): 344–353. doi: 10.1007/BF02671875
    陈洁, 王栋, 马虎, 等. 轴向长度对旋转爆震发动机的影响 [J]. 航空动力学报, 2013, 28(4): 844–849 doi: 10.13224/j.cnki.jasp.2013.04.003

    CHEN Jie, WANG Dong, MA Hu, et al. Influence of axial length on rotating detonation engine [J]. Journal of Aerospace Power, 2013, 28(4): 844–849 doi: 10.13224/j.cnki.jasp.2013.04.003
    RANKIN B A, FOTIA M L, NAPLES A G, et al. Overview of performance, application, and analysis of rotating detonation engine technologies [J]. Journal of Propulsion and Power, 2017, 33(1): 131–143. doi: 10.2514/1.B36303
    ANDRUS I Q, POLANKA M D, KING P I, et al. Experimental of premixed rotating detonation engine using variable slot feed plenum [J]. Journal of Propulsion and Power, 2017: 1–11. doi: 10.2514/1.B36261
    SCHWER D, KAILASANATH K. Numerical investigation of the physics of rotating-detonation-engines [J]. Proceedings of the Combustion Institute, 2011, 33: 2195–2202. doi: 10.1016/l.proci.2010.07.050
    FROLOV S M, AKSENOV V S, IVANOV V S, et al. Large-scale hydrogen-air continuous detonation combustor [J]. International Journal of Hydrogen Energy, 2015, 40: 1616–1623. doi: 10.1016/j.ijhydene.2014.11.112
    FOTIA M L, HOKE J, SCHAUER F. Experimental performance scaling of rotating detonation engines operated on gaseous fuels [J]. Journal of Propulsion and Power, 2017: 1–10. doi: 10.2514/1.B36213
    刘世杰, 刘卫东, 林志勇, 等. 连续旋转爆震波传播过程研究(I): 同向传播模式 [J]. 推进技术, 2014, 35(1): 138–144 doi: 10.13675/j.cnki.tjjs.2014.01.016

    LIU Shijie, LIU Weidong, LIN Zhiyong, et al. Research on continuous rotating detonation wave propagation process(I): one direction mode [J]. Journal of Propulsion Technology, 2014, 35(1): 138–144 doi: 10.13675/j.cnki.tjjs.2014.01.016
    刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究(II): 双波对撞传播模式 [J]. 推进技术, 2014, 35(2): 270–275 doi: 10.13675/j.cnki.tjjs.2014.02.031

    LIU Shijie, LIN Zhiyong, LIU Weidong, et al. Research on continuous rotating detonation wave propagation process(II): two-wave collision propagation mode [J]. Journal of Propulsion Technology, 2014, 35(2): 270–275 doi: 10.13675/j.cnki.tjjs.2014.02.031
    KOWALKOWSKI M, MATSUTOMI Y, HEISTER S, et al. Flame sensing in pulsed combustion using ion probes diodes and visual indictions: AIAA 2009-4945 [R]. USA: AIAA, 2009.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  5392
  • HTML全文浏览量:  1951
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-08-24
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回