爆轰加载下金属锡层裂破碎数值模拟

贺年丰 任国武 陈永涛 郭昭亮

贺年丰, 任国武, 陈永涛, 郭昭亮. 爆轰加载下金属锡层裂破碎数值模拟[J]. 爆炸与冲击, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354
引用本文: 贺年丰, 任国武, 陈永涛, 郭昭亮. 爆轰加载下金属锡层裂破碎数值模拟[J]. 爆炸与冲击, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354
HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354
Citation: HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354

爆轰加载下金属锡层裂破碎数值模拟

doi: 10.11883/bzycj-2017-0354
基金项目: 国家自然科学基金(11702278)
详细信息
    作者简介:

    贺年丰(1988- ),男,博士,助理研究员,henianfeng_thu@163.com

  • 中图分类号: O381

Numerical simulation on spallation and fragmentation of tin under explosive loading

  • 摘要: 对爆轰加载下低熔点金属锡的层裂破碎问题开展了数值模拟。在利用实验数据对所采用数值方法和材料模型开展对比验证的基础上,通过对样品内部物理量时间及空间分布演化对比分析,剖析了冲击加-卸载中样品内部应力波与材料相互作用过程。此外,通过对比分析不同厚度锡样品在爆轰加载下的动态行为特征,进一步认识了自由面反射稀疏波、边侧稀疏波和入射稀疏波共同作用下层裂破碎演化机制。结果表明,当样品较薄时,层裂破碎行为由反射稀疏波主导;随着样品厚度的增大,反射稀疏波主导区缩小,入射稀疏波和边侧稀疏波主导区逐渐增大。
  • 图  1  实验装置示意图以及计算模型图

    Figure  1.  Schematics of experimental device and simulation model

    图  2  冲击波到达自由表面时刻压力分布

    Figure  2.  Pressure distribution in the Sn specimen when the shock wave arriving at the free surface

    图  3  样品中心轴线位置沿厚度方向的压力剖面演化

    Figure  3.  Evolution of pressure distribution along the central axis of the Sn specimen

    图  4  锡样品中间点的压力和速度的演化

    Figure  4.  Evolutions of pressure and velocity at the centre of the Sn specimen

    图  5  锡样品中心轴上不同厚度处的压力和速度的演化

    Figure  5.  Evolution of pressure and velocity at different sites along the central axis of the Sn specimen

    图  6  爆轰加载下不同厚度锡样品碎片云分布的数值模拟结果与实验结果[9]的比较

    Figure  6.  Comparisons of fragment distributions between simulation results and experimental results[9] for the tin specimens with different thicknesses under explosive loading

    图  8  起爆后6.4 μs时刻不同厚度Sn样品内部速度分布

    Figure  8.  Velocity distributions in the Sn specimens with different thicknesses at 6.4 μs after detonation

    图  7  不同厚度锡样品中心轴上离底面0.5 mm处速度演化

    Figure  7.  The velocity evolution at x0=0.5 mm in the Sn specimens with different thicknesses

    表  1  Sn和Al的SG本构参数

    Table  1.   The material parameters in SG constitutive relation for Sn and Al

    材料 G0/GPa Y0/GPa Ymax/GPa $ \beta $ $ \eta $ $ {G_{{p}}'}$ $ {{{G}}_{{T}}'}/\rm{(MPa}\cdot {{\rm{K}}^{-1}}\rm{)}$ $ {Y_{{p}}'}$ $ {T_{{\rm{m0}}}}/{\rm{K}}$
    Sn 17.9 0.16 0.22 2 000 0.06 1.55 −37.95 0.013 9 656.6
    Al 2.86 0.26 0.76 310 0.185 1.86 −17.62 0.016 9 1 220
    下载: 导出CSV

    表  2  Sn和Al的Mie-Grüneisen状态方程参数

    Table  2.   The material parameters in Mie-Grüneisen equation of state for Sn and Al

    材料 $ {{\rho }_{0}}\rm{/(g}\cdot \rm{c}{{\rm{m}}^{\rm{-3}}}\rm{)}$ $ {{c}_{0}}\rm{/(m}\cdot {{\rm{s}}^{-1}}\rm{)}$ $ {S_1}$ $ \gamma $
    Sn 7.287 2 590 1.49 2.27
    Al 2.785 5 328 1.338 2.0
    下载: 导出CSV

    表  3  高能炸药JWL状态方程参数

    Table  3.   The parameters in JWL equation of state for high explosive

    $ {{\rho }_{\rm{e}}}/(\rm{g}\cdot \rm{c}{{\rm{m}}^{-3}}\rm{)}$ $ D/\rm{(m}\cdot {{\rm{s}}^{-1}}\rm{)}$ $ {p_{\rm{e}}}/{\rm{GPa}}$ $ A/{\rm{GPa}}$ $ B/{\rm{GPa}}$ $ {R_1}$ $ {R_2}$ $ \omega $ $ {{e}_{\rm{e}}}\rm{/(GJ}\cdot {{\rm{m}}^{\rm{-3}}}\rm{)}$
    1.85 8 710 34.4 824.8 7.06 4.3 0.79 0.28 10.2
    下载: 导出CSV

    表  4  不同方法得到的不同厚度样品自由面速度

    Table  4.   Free-surface velocities by different methods for the tin specimens with different thicknesses

    样品厚度/mm DPS测速/(km·s−1)[8-10] 计算速度/(km·s−1)
    4.0 1.90 1.93
    6.0 1.74 1.68
    8.0 1.59 1.55
    下载: 导出CSV
  • [1] ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C] // AIP Conference Proceedings: Shock Waves in Condensed Matter, 1983: 277−280. DOI: 10.1016/b978-0-444-86904-3.50065-8.
    [2] ZHIEMBETOV A K, MIKHAYLOV A L, SMIRNOV G S. Experimental study of explosive fragmentation of metals melts [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2001: 547−552. DOI: 10.1063/1.1483598.
    [3] HOLTKAMP D B, CLARK D A, FERME N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2004: 477−482. DOI: 10.1063/1.1780281.
    [4] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2002: 1−34.
    [5] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1914, 213: 437–456. DOI: 10.1098/rsta.1914.0010.
    [6] SIGNOR L, RESSEGUIER T D, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2007: 593−596. DOI: 10.1063/1.2833159.
    [7] RESSEGUIER T D, SIGNOR L, DRAGON A, et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling [J]. International Journal of Fracture, 2010, 163(1/2): 109–119.
    [8] 陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202

    CHEN Yongtao, HONG Renwu, TANG Tiegang, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202
    [9] 陈永涛, 洪仁楷, 陈浩玉, 等. 爆轰加载下金属材料的微层裂现象 [J]. 爆炸与冲击, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07

    CHEN Yongtao, HONG Renkai, CHEN Haoyu, et al. Micro-spalling of metal under explosive loading [J]. Explosion and Shock Waves, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07
    [10] CHEN Y, HONG R, CHEN H, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. doi: 10.1063/1.4973699
    [11] 张林, 李英华, 张祖根, 等. 用于诊断材料微层裂的Asay窗技术 [J]. 爆炸与冲击, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07

    ZHANG Lin, LI Yinghua, ZHANG Zugen, et al. Asay window for probing the microspall of materials [J]. Explosion and Shock Waves, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07
    [12] SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. DOI: 10.1140/epjd/e2008-00212-2.
    [13] XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [14] XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [15] 曹结东, 刘文韬, 张树道. 爆轰驱动锡微层裂的数值模拟研究 [C] // 第十四届全国激波与激波管学术会, 2010: 153−157.
    [16] 张锁春. 光滑质点流体动力学(SPH)方法: 综述 [J]. 计算物理, 1996, 13(4): 385–397

    ZHANG Suochun. Smoothedparticle hydrodynamics (SPH) method: a review [J]. Chinese Journal of Computation Physics, 1996, 13(4): 385–397
    [17] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用 [J]. 力学进展, 2011, 41(2): 217–234

    LIU Moubin, ZONG zhi, CHANG Jianzhong. Developements and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics, 2011, 41(2): 217–234
    [18] STEINBERG D J, COCHRAN S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [19] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  4781
  • HTML全文浏览量:  1857
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-30
  • 修回日期:  2018-04-02
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回