带环形密闭气囊弹体入水冲击过程的数值分析

陈洋 吴亮 曾国伟 周俊汝

陈洋, 吴亮, 曾国伟, 周俊汝. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
引用本文: 陈洋, 吴亮, 曾国伟, 周俊汝. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
CHEN Yang, WU Liang, ZENG Guowei, ZHOU Junru. Numerical analysis of the water entry process of a projectile with a circular airbag[J]. Explosion And Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
Citation: CHEN Yang, WU Liang, ZENG Guowei, ZHOU Junru. Numerical analysis of the water entry process of a projectile with a circular airbag[J]. Explosion And Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387

带环形密闭气囊弹体入水冲击过程的数值分析

doi: 10.11883/bzycj-2017-0387
基金项目: 

国家自然科学基金项目 51004079

国家自然科学基金项目 51479147

国家自然科学基金项目 11602178

湖北省自然科学基金项目 2014CFB822

详细信息
    作者简介:

    陈洋(1994-), 男, 硕士研究生

    通讯作者:

    吴亮, wuliangwust@sina.com

  • 中图分类号: O39;V244

Numerical analysis of the water entry process of a projectile with a circular airbag

  • 摘要: 针对带环形密闭气囊弹体入水冲击问题,基于LS-DYNA,运用控制体积法模拟环形密闭气囊,结合流固耦合算法,模拟了某弹体及附带环形密闭气囊入水过程。将入水过程分为弹体砰水、气囊着水、入水减速、水中悬停、缓慢上浮、上浮出水、水面漂浮7个主要阶段,对比分析了垂直与倾斜入水过程中不同阶段弹体和气囊的姿态变化、减速特性及入水深度等特征的异同。从气囊内压变化、流体对气囊的作用合力、气囊内压与入水速度的关系等方面研究了流体与气囊的相互作用,发现入水过程中气囊内压的变化主要受入水深度、运动速度、连接绳拉力等因素影响。通过计算不同初始内压条件下弹体的入水深度、减速时间及连接绳的拉力峰值,发现囊压越高,入水深度越小,减速时间越短,但是相应连接绳对弹体外壳的拉力峰值越大。因此,在进行入水回收气囊参数设计时,需要综合考虑缓冲效果、减速效果及气囊安全性等因素。
  • 图  1  气囊与弹体模型

    Figure  1.  Airbag and projectile model

    图  2  计算模型示意

    Figure  2.  Schematic diagram of calculation model

    图  3  有限元模型

    Figure  3.  Finite element model

    图  4  流体压力静平衡状态

    Figure  4.  Static equilibrium state of fluid pressure

    图  5  垂直入射全过程

    Figure  5.  Processes of vertical incidence

    图  6  弹体头部节点的竖向速度时程曲线

    Figure  6.  Vertical velocity history curve of projectile's head node

    图  7  弹体头部节点的竖向位移时程曲线

    Figure  7.  Vertical displacement history curve of projectile's head node

    图  8  斜入射全过程

    Figure  8.  Process of oblique incidence

    图  9  弹体头部节点的竖向和水平速度时程曲线

    Figure  9.  Vertical and horizontal velocity history curves of projectile's head node

    图  10  弹体头部节点的竖向和水平位移时程曲线

    Figure  10.  Vertical and horizontal displacement history curves of projectile's head node

    图  11  弹体角速度时程曲线

    Figure  11.  Angular velocity history curve of projectile

    图  12  弹体角位移时程曲线

    Figure  12.  Angular displacement curve of projectile

    图  13  气囊内压变化曲线

    Figure  13.  Internal pressure change curve of airbag

    图  14  流体对气囊的作用力合力时程曲线

    Figure  14.  Time history curve of fluid force on airbag

    图  15  囊压峰值与初始速度的关系曲线

    Figure  15.  Relationship between peak value of airbag internal pressure and initial velocity

    图  16  入水深度与初始囊压的关系曲线

    Figure  16.  Relationship between water entry depth and initial airbag internal pressure

    图  17  减速时间与初始囊压的关系曲线

    Figure  17.  Relationship between deceleration time and initial airbag internal pressure

    图  18  连接绳拉力峰值与初始囊压的关系曲线

    Figure  18.  Relationship between peak tension of connecting rope and initial airbag internal pressure

    表  1  气囊和连接绳的材料参数

    Table  1.   Material parameters of the airbag and corresponding rope

    材料 ρ/(kg·m-3) μ E/GPa
    气囊 875 0.2 0.557
    连接绳 840 0.2 21.9
    下载: 导出CSV

    表  2  水和空气参数

    Table  2.   Parameters of water and air

    材料 ρ/(kg·m-3) pc/Pa ν/(mPa·s) C/(m·s-1) S1 S2 S3 γ0
    998 -10 000 870 1 480 2.56 -1.99 0.227 0.5
    空气 1.185 -10 0.018 4 340 0 0 0 1.4
    下载: 导出CSV
  • [1] 陈帅, 李斌, 温金鹏, 等.软着陆气囊缓冲特性与参数设置的理论研究[J].振动与冲击, 2009, 28(4):25-28. doi: 10.3969/j.issn.1000-3835.2009.04.006

    CHEN Shuai, LI Bin, WEN Jinpeng, et al. Cushioning characteristic and parameter design of a soft landing airbag[J]. Journal of Vibration and Shock, 2009, 28(4):25-28. doi: 10.3969/j.issn.1000-3835.2009.04.006
    [2] 温金鹏, 李斌, 谭德伟, 等.考虑织布弹性的软着陆气囊缓冲特性研究[J].振动与冲击, 2010, 29(2):79-83. doi: 10.3969/j.issn.1000-3835.2010.02.018

    WEN Jinpeng, LI Bin, TAN Dewei, et al. Cushioning characteristics of a soft landing airbag with elastic fabric[J]. Journal of Vibration and Shock, 2010, 29(2):79-83. doi: 10.3969/j.issn.1000-3835.2010.02.018
    [3] 卫剑征, 谭惠丰, 万志敏, 等.缓冲气囊展开与缓冲着陆过程的仿真分析[J].航天返回与遥感, 2010, 31(5):1-8. doi: 10.3969/j.issn.1009-8518.2010.05.001

    WEI Jianzheng, TAN Huifeng, WAN Zhimin, et al. Simulation for airbag deployment and landing process of inflatable landing vechiles[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5):1-8. doi: 10.3969/j.issn.1009-8518.2010.05.001
    [4] 邓春燕, 裴锦华.全向式着陆缓冲气囊的折叠建模与充气过程仿真[J].南京航空航天大学学报, 2009, 41(增刊1):97-102. http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2022

    DENG Chunyan, PEI Jinhua. Modeling and process simulating about folding and inflating of omni-directional-type airbag[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(Suppl 1):97-102. http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2022
    [5] 蔡文, 李斌, 温金鹏, 等.无人机软着陆气囊缓冲特性研究[J].兵工学报, 2014, 35(11):1867-1875. doi: 10.3969/j.issn.1000-1093.2014.11.019

    CAI Wen, LI Bin, WEN Jinpeng, et al. Research on cushioning characteristics of UAV soft landing airbags[J]. Acta Armamentarii, 2014, 35(11):1867-1875. doi: 10.3969/j.issn.1000-1093.2014.11.019
    [6] 邵志建, 裴锦华.某无人机横向圆柱排气式气囊着陆装置缓冲过程研究[J].航天返回与遥感, 2016, 37(2):26-33. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201602004

    SHAO Zhijian, PEI Jinghua. Simulation of bi-cylindrical airbag cushioning system for pilotless aircraft[J]. Spacecraft Recovery & Remote Sensing, 2008, 20(5):1325-1327. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201602004
    [7] 温金鹏, 李斌, 杨智春.缓冲气囊冲击减缓研究进展[J].宇航学报, 2010, 31(11):2438-2447. doi: 10.3873/j.issn.1000-1328.2010.11.002

    WEN Jinpeng, LI Bin, YANG Zhichun. Progress of study on impact attenuation capability of airbag cushion system[J]. Journal of Astronautics, 2010, 31(11):2438-2447. doi: 10.3873/j.issn.1000-1328.2010.11.002
    [8] 秦洪德, 赵林岳, 申静.入水冲击问题综述[J].哈尔滨工业大学学报, 2011(增刊1):152-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100301355

    QIN Hongde, ZHAO Linyue, SHEN Jing. Review of water entry problem[J]. Journal of Harbin Institute of Technology, 2011(Suppl 1):152-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100301355
    [9] WORTHINGTON A M, COLE R S. Impact with a liquid surface studied with aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London, 1900, 194:175-199. doi: 10.1098/rsta.1900.0016
    [10] 王永虎, 石秀华.入水冲击问题研究的现状与进展[J].爆炸与冲击, 2008, 28(3):276-282. doi: 10.3321/j.issn:1001-1455.2008.03.014

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem[J]. Explosion and Shock Waves, 2008, 28(3):276-282. doi: 10.3321/j.issn:1001-1455.2008.03.014
    [11] 卢炽华, 何友声.二维弹性结构入水冲击过程中的流固耦合效应[J].力学学报, 2000, 32(2):129-140. doi: 10.3321/j.issn:0459-1879.2000.02.001

    LU Chihua, HE Yousheng. Coupled analysis of nonlinear interaction between fluid and structure during impact[J]. Acta Mechanica Sinica, 2000, 32(2):129-140. doi: 10.3321/j.issn:0459-1879.2000.02.001
    [12] 李飞, 孙凌玉, 张广越, 等.圆柱壳结构入水过程的流固耦合仿真与试验[J].北京航空航天大学学报, 2007, 33(9):1117-1120. doi: 10.3969/j.issn.1001-5965.2007.09.027

    LI Fei, SUN Lingyu, ZHANG Guangyue, et al. Simulation and experiment of cylinder shell structure dropping into water based on fluid structure interaction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9):1117-1120. doi: 10.3969/j.issn.1001-5965.2007.09.027
    [13] 施红辉, 胡青青, 陈波, 等.钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究[J].爆炸与冲击, 2015, 35(5):617-624. http://www.bzycj.cn/CN/abstract/abstract9509.shtml

    SHI Honghui, HU Qingqing, CHEN Bo, et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies[J]. Explosion and Shock Waves, 2015, 35(5):617-624. http://www.bzycj.cn/CN/abstract/abstract9509.shtml
    [14] 程涵.气囊工作过程仿真研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011253523.htm

    CHENG Han. Numerical simulation research on airbag working process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011253523.htm
    [15] 李裕春, 时党勇, 赵远.ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社, 2008.
    [16] 蒋克强, 张遵鸥, 张培成.基于ANSYS/LS-DYNA的示位标入水冲击仿真分析[J].电子机械工程, 2012, 28(2):15-17, 21. doi: 10.3969/j.issn.1008-5300.2012.02.005

    JIANG Keqiang, ZHANG Zun'ou, ZHANG Peicheng. Water-entry impact simulation analysis of a position indicating radio beacon based on ANSYS/LS-DYNA[J]. Electro-Mechanical Engineering, 2012, 28(2):15-17, 21. doi: 10.3969/j.issn.1008-5300.2012.02.005
    [17] 刘树红, 吴玉林, 左志钢.应用流体力学[M].北京:清华大学出版社, 2012.
    [18] 郭子涛, 张伟, 郭钊, 等.截卵形弹水平入水的速度衰减及空泡扩展特性[J].爆炸与冲击, 2017, 37(4):727-733. http://www.bzycj.cn/CN/abstract/abstract9775.shtml

    GUO Zitao, ZHANG Wei, GUO Zhao, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles[J]. Explosion and Shock Waves, 2017, 37(4):727-733. http://www.bzycj.cn/CN/abstract/abstract9775.shtml
    [19] 何春涛, 王聪, 魏英杰, 等.圆柱体垂直入水空泡形态试验[J].北京航空航天大学学报, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643

    HE Chuntao, WANG Cong, WEI Yingjie, et al. Vertical water entry cavity of cylinder body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205748643
    [20] 邓春燕, 裴锦华.全向式气囊着陆装置缓冲过程的仿真研究[J].中国空间科学技术, 2010, 30(1):78-83. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201001012

    DENG Chunyan, PEI Jinhua. Simulation about buffer process of omni-directional-type airbag landing device[J]. Chinese Space Science and Technology, 2010, 30(1):78-83. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201001012
    [21] 李名琦.应急气囊着水冲击特性的试验研究与数值分析[D].南京: 南京航空航天大学, 2008. doi: 10.7666/d.d053189
    [22] 戴华杰, 胡振东, 咸奎成, 等.火星探测器气囊缓冲系统着陆过程仿真[J].力学季刊, 2010, 31(4):555-561. http://d.old.wanfangdata.com.cn/Periodical/lxjk201004014

    DAI Huajie, HU Zhendong, XIAN Kuicheng, et al. Simulation analysis for landing process of a Mars detector with airbag buffer system[J]. Chinese Quarterly of Mechanics, 2010, 31(4):555-561. http://d.old.wanfangdata.com.cn/Periodical/lxjk201004014
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  5364
  • HTML全文浏览量:  1563
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-26
  • 修回日期:  2018-01-02
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回