快速热点火熔奥梯铝炸药燃烧转爆轰实验研究

赵生伟 周刚 丁洋 王长利

赵生伟, 周刚, 丁洋, 王长利. 快速热点火熔奥梯铝炸药燃烧转爆轰实验研究[J]. 爆炸与冲击, 2019, 39(3): 032103. doi: 10.11883/bzycj-2017-0396
引用本文: 赵生伟, 周刚, 丁洋, 王长利. 快速热点火熔奥梯铝炸药燃烧转爆轰实验研究[J]. 爆炸与冲击, 2019, 39(3): 032103. doi: 10.11883/bzycj-2017-0396
ZHAO Shengwei, Zhou Gang, DING Yang, WANG Changli. Experimental investigation on deflagration to detonation transition of HMX/TNT/AL compositions at fast thermal ignition[J]. Explosion And Shock Waves, 2019, 39(3): 032103. doi: 10.11883/bzycj-2017-0396
Citation: ZHAO Shengwei, Zhou Gang, DING Yang, WANG Changli. Experimental investigation on deflagration to detonation transition of HMX/TNT/AL compositions at fast thermal ignition[J]. Explosion And Shock Waves, 2019, 39(3): 032103. doi: 10.11883/bzycj-2017-0396

快速热点火熔奥梯铝炸药燃烧转爆轰实验研究

doi: 10.11883/bzycj-2017-0396
基金项目: 国家自然科学基金(11302180)
详细信息
    作者简介:

    赵生伟(1978- ),男,博士,副研究员, zhaoshengwei@nint.ac.cn

    通讯作者:

    周 刚(1964- ),男,博士,研究员, zhougang@nint.ac.cn

  • 中图分类号: O381;TJ55

Experimental investigation on deflagration to detonation transition of HMX/TNT/AL compositions at fast thermal ignition

  • 摘要: 以熔铸型含铝混合炸药熔奥梯铝为对象,研究铸装含铝混合炸药快速热点火后的燃烧转爆轰特性。建立了快速热点火燃烧转爆轰实验平台,由实验装置(加热装置、约束钢管、炸药)、压力测试系统、光纤测速系统组成;加热装置加热15 mm厚45钢钢板,峰值温度大于1 100 ℃,温升速率为85~95 ℃/s。开展了快速热点火带壳熔奥梯铝炸药燃烧转爆轰实验,由加热装置加热约束钢管内熔奥梯铝炸药,炸药化学反应阵面压力和传播速度分别由压电性高压压力传感器和光纤探针测定;实测阵面压力约1 GPa,传播速度最大约2 600 m/s。由光纤数据获得炸药化学反应阵面传播轨迹,通过特征线方法获得冲击形成点,半定量给出冲击形成距离大于850 mm;并比较了管体破片质量实测值与炸药完全爆轰时破片平均质量计算值,实测值远小于计算值。综合实测化学反应阵面传播速度和压力、冲击形成距离分析、破片质量比较,可确定熔奥梯铝炸药没有发生完全爆轰,其化学反应状态为爆燃。另外,采用Adams和Pack模型、CJ燃烧模型,都能够半定量的预估冲击形成距离和燃烧波后压力,为实验设计提供依据,但CJ燃烧模型的计算结果更接近于实测值。
  • 图  1  平台结构图

    Figure  1.  Experimental platform

    图  2  实验装置结构图

    Figure  2.  Structure of experimental equipment

    图  3  加热装置结构示意图

    Figure  3.  Heating equipment

    图  4  标定实验实物布置图

    Figure  4.  Layout of demarcation experiment

    图  5  一致性标定实验温度历程曲线

    Figure  5.  Temperature history in calibration experiment

    图  6  一致性标定实验钢板受加热烧蚀面熔斑深度比较

    Figure  6.  Comparison of melting depth in calibration experiment

    图  7  压力测试系统示意及实物图

    Figure  7.  Sketch and photo of pressure testing system

    图  8  塑料光纤结构及光纤测速系统示意图

    Figure  8.  Plastic fiber probe and its system used in velocity measurement

    图  9  光纤测速系统实物图

    Figure  9.  Sketch and photo of fiber probe system used in velocity measurement

    图  10  光纤探针和压力传感器位置示意

    Figure  10.  Position of fiber probe and pressure sensor

    图  11  实验装置实物图

    Figure  11.  Photo of experimental system

    图  12  管体破片实物图

    Figure  12.  Photo of fragments

    图  13  管体破片质量统计图

    Figure  13.  Statistic graph of quality of fragments

    图  14  实测光纤历程曲线

    Figure  14.  Typical measured history curves

    图  15  实测化学反应阵面传播轨迹

    Figure  15.  Measured propagation track of fiber probe

    图  16  实测典型压力历程曲线

    Figure  16.  Typical pressure history of chemical reaction front

    图  17  Macek模型分区结构图

    Figure  17.  Sketch of Macek model

    图  18  熔奥梯铝炸药特征线图

    Figure  18.  Characteristic curve of the cast HMX/TNT/AL compositions

    表  1  压力特征参数

    Table  1.   Pressure parameters

    实验序号 压力峰值/MPa 时间/µs
    1# 1 050 73.5
    2# 1 136 69.0
    下载: 导出CSV

    表  2  燃烧区和压缩区状态参数

    Table  2.   State parameters of Region Ⅰ and Region Ⅱ

    Adams and Pack 模型
    p1/GPa p2/GPa u1+c1)/(m·s−1 u1/(m·s−1 c1/(m·s−1 ρ1/(kg·m−3 W/(m·s−1 ρ2/(kg·m−3 E1/(kJ·g−1 E2/(kJ·g−1
    1.74 1.70 3 460 305 3 155 1 993 376 378 871.6 2 775.4
    3.54 3.26 3 989 570 3 419 2 159 796 617 1 630.4 3 273.5
    6.25 5.20 4 654 902 3 752 2 370 1 400 843 2 604.5 3 811.6
    6.90 5.58 4 798 974 3 824 2 415 1 535 883 2 816.6 3 913.6
    9.0 6.71 5 228 1 189 4 039 2 551 1 945 991 3 458.6 4 192.4
    12.83 8.34 5 912 1 531 4 381 2 767 2 592 1 132 4 500.2 4 559.5
    下载: 导出CSV
    CJ 燃烧模型
    p1/GPa p2/GPa u1+c1)/(m·s−1 u1/(m·s−1 c1/(m·s−1 ρ1/(kg·m−3 W/(m·s−1 u2/(m·s−1 ρ2/(kg·m−3 E1/(kJ·g−1 E2/(kJ·g−1
    1.1 0.32 3 246 198 3 048 1 925 376 −2 077 138 565.7 1 423.8
    2.55 0.78 3 708 429 3 279 2 071 796 −1 895 283 1 227.2 1 715.5
    5.11 1.67 4 390 770 3 620 2 286 1 400 −1 623 476 2 214.3 2 164.6
    5.77 1.90 4 546 848 3 698 2 335 1 535 −1 561 518 2 443.3 2 271.0
    7.96 2.71 5 022 1 086 3 936 2 486 1 945 −1 369 645 3 148.2 2 603.3
    12.05 4.29 5 782 1 466 4 316 2 726 2 592 −1 060 841 4 299.2 3 160.8
    下载: 导出CSV
  • [1] Evaluation experiment of nonnuclear ammunition about Fatalness: MIL-STD-2015C [S]. 2003: 47−52.
    [2] MACEK A. Transition from deflagration to detonation in cast explosives [J]. Journal of Chemical Physics, 1959, 31(2): 162–167. doi: 10.1063/1.1730287
    [3] GRIFFITH N, GROOCOKE J M. The burning to detonation in solid explosive [J]. Journal of Chemical Physics, 1960: 4154–4165. doi: 10.1039/jr9600004154
    [4] MCAFEE J M, ASAY B W, CAMPBELL A W, et al. Deflagration to detonation in granular HMX, ignition, kinetics and shock formation[C]//Proceedings 10th Symp(Int) on Detonation. Maryland: NSWC, 1993: 716−720. DOI: CDSTIC.DOE.10162277.
    [5] LEURET F, CHAISSE F, PRESLES H N. Experimental study of the low velocity detonation regime during the deflagration to detonation transition in a high density explosive[C]// Proceedings of 11th International Symposium on Detonation//Snowmass, Colorado, 1998: 693−701.
    [6] GIFFORD M J, TSEMBELIS A K, FIELD J E. Anomalous detonation velocities following type II deflagration to detonation transitions in pentaerythritol tetranitrate [J]. Journal of J Applied Phys, 2002, 91(4): 4995–5002. doi: 10.1063/1.1462415
    [7] SANDUSKY H W, GRANHOLM R H, BOHL D G, et al. Deflagration to detonation transition in LX-04 as a function of loading density, temperature, and confinement[C]//13th International Detonation Symposium. Norfolk, VA, United States, 2006: 1−9.
    [8] TARVER C M, GOODALE T C, SHAW R, et al. Deflagration to detonation transiton studies for two potential isomeric cast primary explosives[C] //6th Symposium (International) on Detonation//Coronado, California, 1976: 231−250.
    [9] CHUZEVILLE V, BAUDIN G, LEFRANCOIS A, et al. Detonation initiation of heterogeneous melt cast high explosives[C]// 41st International Pyrotechnic Seminar, EUROPYRO, 2015: 1−5. DOI: 10.1063/1.4971467.
    [10] RAO P T, GONTHIER K A. Mesostructure dependent reactive burn modeling of porous solid explosives[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, 2014: 1−10. DOI: 10.2514/6.2014-3810.
    [11] RAO P T, GONTHIER K A. Analysis of compaction shock interactions during DDT of low density HMX [J]. Shock Compression of Condensed Matter, 2015: 1–7. doi: 10.1063/1.4971610
    [12] TRINGE J W, VANDERSALL K S, REAUGH J E. Observation and Modeling of Deflagration to Detonation Transition (DDT) in Low Density HMX [J]. Shock Compression of Condensed Matter, 2015, 1793(1): 060024. doi: 10.1063/1.4971580
    [13] BODARD S, LAPÉBIE E, SAUREL R. Experiments and modeling of dynamic powder compaction in the scope of deflagration to detonation transition studies [J]. Shock Compression of Condensed Matter, 2015, 1793(1): 040029. doi: 10.1063/1.4971523
    [14] Dattelbaum D M, Sheffield S A, Gustavsen R L. A comparison of the shock initiation sensitivities, and resulting reactive flow of several 2,4,6-trinitrotoluene-based explosives [C]// Fifteenth International Detonation Symposium, 2014: 740−749.
    [15] 孙锦山. 含能材料的燃烧转爆轰研究 [J]. 含能材料, 1994, 2(3): 1–12

    SUN Jinshan. Study of deflagration to detonation transiton in energetic materials [J]. Chinese Journal of Energetic Materials, 1994, 2(3): 1–12
    [16] 张超, 马亮, 赵凤起, 等. 含能材料燃烧转爆轰研究进展 [J]. 含能材料, 2015, 23(10): 1028–1036

    ZHANG Chao, MA Liang, ZHAO Fengqi, et al. Review on Deflagration to detonation transition of energetic materials [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 1028–1036
    [17] 王平. 凝聚相炸药DDT的实验研究与数值模拟[D]. 北京: 北京理工大学, 1992: 30−45.

    WANG Ping. Experimental study and numerical simulation for deflagration to detonation transition about condensed explosives[D]. Beijing: Beijing Institute of Technology, 1992: 30−45.
    [18] 文尚刚, 王胜强, 黄文斌, 等. 高密度B炸药的燃烧转爆轰实验研究 [J]. 爆炸与冲击, 2007, 27(11): 567–571

    WEN Shanggang, WANG Shengqiang, HUANG Wenbin, et al. An experimental study on deflagration to detonation transition in high denstity compositon B [J]. Explosion and Shock Waves, 2007, 27(11): 567–571
    [19] 赵同虎, 张新彦, 李斌, 等. 颗粒状HMX、RDX的燃烧转爆轰实验研究 [J]. 含能材料, 2003, 11(12): 187–190 doi: 10.11943/j.issn.1006-9941.2015.10.021

    ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Experimental study on the deflagration to detonation transition for granular HMX, RDX [J]. Energetic Materials, 2003, 11(12): 187–190 doi: 10.11943/j.issn.1006-9941.2015.10.021
    [20] 杨涛. 高装填密度火药床燃烧转爆轰的实验研究和数值模拟[D]. 南京: 华东工学院, 1995: 8−22.

    YANG Tao. Experimental study and numerical simulation for deflagration to detonation transition in high packed propellant bed[D]. Nanjing: East China Institute of Technolagy, 1995: 8−22.
    [21] 段宝福. 新型钝感工业炸药的燃烧转爆轰研究[M]. 北京: 中国水利水电出版社, 2009: 55−62.

    DUAN Baofu. Study on deflagration to detonation transition for new style deterred industrial explosive. Beijing: China Waterpower Press, 2009: 55−62.
    [22] 张超, 赵凤起, 金朋刚等. p(BAMO-AMMO)热塑性高能推进剂燃烧转爆轰试验研究 [J]. 火炸药学报, 2016, 39(04): 92–96

    ZHANG Chao, ZHAO Fengqi, JIN Penggang, et al. Experimental study on deflagration to detonation transition (DDT) in p(BAMO-AMMO) thermoplastic high energy propellants [J]. Chinese Journal of Explosives & Propellants, 2016, 39(04): 92–96
    [23] 陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究 [J]. 火炸药学报, 2012, 35(4): 69–72 doi: 10.3969/j.issn.1007-7812.2012.04.018

    CHEN Xiaoming, ZHAO Ying, SONG Changwen, et al. Experimental study on deflagration to fetonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 69–72 doi: 10.3969/j.issn.1007-7812.2012.04.018
    [24] 秦能. 一种RDX-CMDB推进剂危险性能研究 [J]. 含能材料, 2011, 19(06): 725–729 doi: 10.3969/j.issn.1006-9941.2011.06.027

    QIN Neng, PEI Jiangfeng, WANG Mingxing. Hazard property of the RDX-CMDB propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(06): 725–729 doi: 10.3969/j.issn.1006-9941.2011.06.027
    [25] 秦能, 裴江峰, 王明星. 几种典型固体推进剂的燃烧转爆轰实验研究 [J]. 火炸药学报, 2010, 33(04): 86–89 doi: 10.3969/j.issn.1007-7812.2010.04.022

    QIN Neng, PEI Jiangfeng, WANG Mingxing. Experimental study on deflagration to detonation transition of several typical solid propellants [J]. Chinese Journal of Explosives & Propellants, 2010, 33(04): 86–89 doi: 10.3969/j.issn.1007-7812.2010.04.022
    [26] 冯晓军, 杨建刚, 徐洪涛, 等. AP和Al含量对DNTF基炸药燃烧转爆轰的影响 [J]. 含能材料, 2016, 24(08): 752–756 doi: 10.11943/j.issn.1006-9941.2016.08.005

    FENG Xiaojun, YANG Jiangang, Xu Hongtao, et al. Effect of content of AP and Al on the deflagration to detonation transition of DNTF-based explosives [J]. Chinese Journal of Energetic Materials, 2016, 24(08): 752–756 doi: 10.11943/j.issn.1006-9941.2016.08.005
    [27] 陈朗, 王飞, 伍俊英, 等. 高密度压装炸药燃烧转爆轰研究 [J]. 含能材料, 2011, 19(06): 697–704 doi: 10.3969/j.issn.1006-9941.2011.06.022

    CHEN Lang, WANG Fei, WU Junying, et al. Investigation of the deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Energetic Materials, 2011, 19(06): 697–704 doi: 10.3969/j.issn.1006-9941.2011.06.022
    [28] 代晓淦, 王娟, 文玉史, 等. PBX-2炸药加热条件下燃烧转爆轰特性 [J]. 含能材料, 2013, 21(05): 649–652 doi: 10.3969/j.issn.1006-9941.2013.05.017

    DAI Xiaogan, WANG Juan, WEN Yushi, et al. Deflagration to detonation transition characteristics for heated PBX-2 [J]. Chinese Journal of Energetic Materials, 2013, 21(05): 649–652 doi: 10.3969/j.issn.1006-9941.2013.05.017
    [29] 金韶华, 松全才. 炸药理论[M]. 西安: 西北工业大学出版社, 2010: 288−304.
    [30] 兵器工业第二零四研究所. 混合炸药及其发展[M]. 西安, 2008: 52−56.
    [31] 兵器工业第二零四研究所. 火炸药手册[M]. 西安, 1987: 200−201.
    [32] 九零三所情报室. 高能炸药性能数据手册[M]. 四川绵阳, 1982: 65−66.
    [33] 成大先. 机械设计手册[M]. 北京: 化学工业出版社, 2004: 3−15.
    [34] 赵生伟, 周刚, 初哲, 等. 快速热作用下带壳铸装梯黑铝炸药热响应实验研究 [J]. 兵工学报, 2014, 30(S2): 302–308 doi: 10.3321/j.issn:1000-1093.2009.08.003

    ZHAO Shengwei, ZHOU Gang, CHU Zhe, et al. Experiment investigation on thermal response of cast TNT/RDX/AL [J]. Acta Armamentarii, 2014, 30(S2): 302–308 doi: 10.3321/j.issn:1000-1093.2009.08.003
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  6685
  • HTML全文浏览量:  2072
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-10-11
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回