气体泄爆压力分步计算模型及其湍流修正

孙松 高康华 邱艳宇 王明洋

孙松, 高康华, 邱艳宇, 王明洋. 气体泄爆压力分步计算模型及其湍流修正[J]. 爆炸与冲击, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399
引用本文: 孙松, 高康华, 邱艳宇, 王明洋. 气体泄爆压力分步计算模型及其湍流修正[J]. 爆炸与冲击, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399
SUN Song, GAO Kanghua, QIU Yanyu, WANG Mingyang. A sub-step calculation model of gas explosion venting pressure and its turbulent correction[J]. Explosion And Shock Waves, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399
Citation: SUN Song, GAO Kanghua, QIU Yanyu, WANG Mingyang. A sub-step calculation model of gas explosion venting pressure and its turbulent correction[J]. Explosion And Shock Waves, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399

气体泄爆压力分步计算模型及其湍流修正

doi: 10.11883/bzycj-2017-0399
基金项目: “十三五”国家重点研发计划(2017YFC0804702)
详细信息
    作者简介:

    孙 松(1991- ),男,博士研究生,sunsongky23@163.com

  • 中图分类号: O381; X932

A sub-step calculation model of gas explosion venting pressure and its turbulent correction

  • 摘要: 通过将密闭空间内爆燃泄放过程进行微分,假设各微分时段内爆燃泄放过程均按照先燃烧、再泄放、最后压力平衡的过程独立分步进行,最终得到泄爆压力分步计算模型。同时,在尺寸为2 m×1.2 m×0.6 m的爆炸腔体一端安装击穿压力相同、泄放面积不同的泄爆构件进行泄爆实验,对分步压力计算模型进行验证。对比发现:大面积泄放条件下,2个传感器测得的压力曲线基本重合,均为单峰值曲线,此时模型计算值与实验结果吻合较好;小面积泄放条件下,腔体内压力曲线均为双峰值曲线,由于泄放截面改变加剧口部湍流扰动,使得腔体内部产生压力梯度,近泄爆口处传感器测得的第2个压力峰值要大于腔体内部传感器相应的测量值,经湍流速度修正后的压力计算模型可以较好地描述近泄爆口处的压力变化情况。
  • 图  1  爆燃泄放分步计算模型示意图

    Figure  1.  Diagrams of the sub-steps model for combustion venting

    图  2  实验系统示意图

    Figure  2.  Schematic of the experimental system

    图  3  泄爆构件示意图(单位为mm)

    Figure  3.  Schematic diagrams of vent covers (unit in mm)

    图  4  可燃气体的体积分数不同、采用泄爆板作为泄爆构件时,泄爆压力的计算值与实验测量结果的比较

    Figure  4.  Comparison of gas explosion venting pressure between calculated results by the model and experimental ones in the experiments with vent plates at different volume fractions of combustible gas

    图  5  可燃气体的体积分数不同、采用泄爆膜作为泄爆构件时,泄爆压力的计算值与实验测量结果的比较

    Figure  5.  Comparison of gas explosion venting pressures between the model and the tests with vent films at different volume fractions of combustible gas

    图  6  运用本文计算模型计算其他研究者的实验工况[5, 7, 18]下的泻爆压力

    Figure  6.  Gas explosion venting pressures calculated by the model proposed in this paper for the experimental conditions[5, 7, 18] of other researchers

    图  7  针对体积分数不同的可燃气体,修正后的压力计算模型得到的泻爆压力与实验结果的比较

    Figure  7.  Comparison of gas explosion venting pressures calculated by the modified model and the test data at different volume fractions of combustible gas

  • [1] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
    [2] CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institude, 2011, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
    [3] 师喜林, 王志荣, 蒋军成. 球形容器内气体的泄爆过程 [J]. 爆炸与冲击, 2009, 29(4): 390–394. DOI: 10.11883/1001-1455(2009)04-0390-05.

    SHI Xilin, WANG Zhirong, JIANG Juncheng. Explosion-vented processes for methane-air premixed gas in spherical vessels with venting pipes [J]. Explosion and Shock Waves, 2009, 29(4): 390–394. DOI: 10.11883/1001-1455(2009)04-0390-05.
    [4] 胡俊, 浦以康, 万士昕, 等. 柱形容器开口泄爆过程中压力发展特性的实验研究 [J]. 爆炸与冲击, 2001, 21(1): 47–52. doi: 10.3321/j.issn:1001-1455.2001.01.010

    HU Jun, PU Yikang, WAN Shixin, et al. Experimental investigations of pressure development during explosion vent from cylindrical vessels [J]. Explosion and Shock Waves, 2001, 21(1): 47–52. doi: 10.3321/j.issn:1001-1455.2001.01.010
    [5] BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures [J]. Combustion Science and Technology, 2010, 182(11−12): 1915–1932. DOI: 10.1080/00102202.2010.497415.
    [6] BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels: Ⅱ: theory and experiment [J]. Combustion and Flame, 1978, 32: 237–255. DOI: 10.1016/0010-2180(78)90099-8.
    [7] HAN Yongli, CHEN Longzhu. Mechanical model of domestic gas explosion load [J]. Transactions of Tianjin University, 2008, 14(6): 434–440. DOI: 10.1007/s12209-008-0075-x.
    [8] UGARTE O J, AKKERMAN V, RANGWALA A S. A computational platform for gas explosion venting [J]. Process Safety and Environmental Protection, 2016, 99: 167–174. DOI: 10.1016/j.psep.2015.11.001.
    [9] National Fire Protection Association. Standard on explosion protection by deflagration venting: NFPA68-2013 [S]. Quincy: National Fire Protection Association, 2013.
    [10] SUSTEK J, JANOVSKY B. Comparison of empirical and semi-empirical equations for vented gas explosion with experimental data [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1549–1557. DOI: 10.1016/j.jlp.2013.08.014.
    [11] KOBIERA A, KINDRACKI J, ZYDAK P, et al. A new phenomenological model of gas explosion based on characteristics of flame surface [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 271–280. DOI: 10.1016/j.jlp.2007.04.023.
    [12] KIM Joon Hyun, KIM Joo-Hyun. Simplified modeling of deflagration in vessels [J]. Journal of Mechanical Science and Technology, 2004, 18(8): 1338–1348. DOI: 10.1007/bf02984248.
    [13] GU X Z, HAQ M Z, LAWES M, et al. Laminar burning velocity and Markstein lengths of methane-air mixtures [J]. Combustion and Flame, 2000, 121(1−2): 41–58. DOI: 10.1016/S0010-2180(99)00142-X.
    [14] 赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996.
    [15] BAO Qi, FANG Qin, ZHANG Yadong, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [16] MOEN I O, LEE J H S, HJERTAGER B H, et al. Pressure develpoment due to turbulent flame propagation in large-scale methane-air explosions [J]. Combustion and Flame, 1982, 47: 31–52. doi: 10.1016/0010-2180(82)90087-6
    [17] WEI Haiqiao, GAO Dongzhi, ZHOU Lei, et al. Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate [J]. Combustion and Flame, 2017, 178: 277–285. DOI: 10.1016/j.combustflame.2017.01.011.
    [18] 孙敖. 建筑物内可燃气体爆炸泄放研究[D]. 南京: 解放军理工大学, 2013.
    [19] MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1-3): 109–116. DOI: 10.1016/S0894-1777(99)00060-6.
    [20] 孙松, 高康华. 管道内气体爆炸时火焰传播湍流因子的研究 [J]. 煤炭学报, 2016, 41(S2): 441–447. DOI: 10.13225/j.cnki.jccs.2016.0102.

    SUN Song, GAO Kanghua. Study on turbulence factors of flame propagation in tube under gas explosion [J]. Journal of China Coal Society, 2016, 41(S2): 441–447. DOI: 10.13225/j.cnki.jccs.2016.0102.
    [21] PAOLO C, ROTA R, CARR S, et al. Vented gas deflagration: a detailed mathematical model tuned on a large set of experimental data [J]. Combustion and Flame, 1990, 80(1): 49–64. DOI: 10.1016/0010-2180(90)90051-R.
  • 加载中
图(7)
计量
  • 文章访问数:  5199
  • HTML全文浏览量:  1648
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-01-09
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回