连续测量爆轰波和冲击波波阵面位置的波长-时间映射型光纤光栅传感器技术

邓向阳 罗振雄 刘寿先 蒙建华 田建华 何莉华

邓向阳, 罗振雄, 刘寿先, 蒙建华, 田建华, 何莉华. 连续测量爆轰波和冲击波波阵面位置的波长-时间映射型光纤光栅传感器技术[J]. 爆炸与冲击, 2019, 39(3): 034101. doi: 10.11883/bzycj-2017-0416
引用本文: 邓向阳, 罗振雄, 刘寿先, 蒙建华, 田建华, 何莉华. 连续测量爆轰波和冲击波波阵面位置的波长-时间映射型光纤光栅传感器技术[J]. 爆炸与冲击, 2019, 39(3): 034101. doi: 10.11883/bzycj-2017-0416
DENG Xiangyang, LUO Zhenxiong, LIU Shouxian, MENG Jianhua, TIAN Jianhua, HE Lihua. Wavelength-time mapping linear chirped fiber bragg grating sensor for measuring the wave-front position of detonation and shock wave[J]. Explosion And Shock Waves, 2019, 39(3): 034101. doi: 10.11883/bzycj-2017-0416
Citation: DENG Xiangyang, LUO Zhenxiong, LIU Shouxian, MENG Jianhua, TIAN Jianhua, HE Lihua. Wavelength-time mapping linear chirped fiber bragg grating sensor for measuring the wave-front position of detonation and shock wave[J]. Explosion And Shock Waves, 2019, 39(3): 034101. doi: 10.11883/bzycj-2017-0416

连续测量爆轰波和冲击波波阵面位置的波长-时间映射型光纤光栅传感器技术

doi: 10.11883/bzycj-2017-0416
基金项目: 国家自然科学基金项目(11672275);中国工程物理研究院科学技术发展基金项目(2015B0401079,2015B0401080)
详细信息
    作者简介:

    邓向阳(1975- ),男,硕士,副研究员,dxyifp@caep.cn

  • 中图分类号: O384

Wavelength-time mapping linear chirped fiber bragg grating sensor for measuring the wave-front position of detonation and shock wave

  • 摘要: 针对强度型线性啁啾光纤布拉格光栅(LCFBG)传感器测量爆轰波、冲击波波阵面位置时不仅需要LCFBG被完全破坏,而且需要其反射长波长处先于短波长处被破坏的缺点,建立了一种波长-时间映射型LCFBG传感器技术。该技术通过高重频、锁模飞秒激光器和色散光纤将爆轰波、冲击波作用下LCFBG的瞬态反射谱,转为相同形状的脉冲信号,然后根据该脉冲信号的3 dB时宽计算出LCFBG的长度,即为爆轰波、冲击波波阵面位置。对波长-时间映射型LCFBG传感器的时间分辨本领、波阵面位置的相对测量不确定度进行了分析,得出它们的值分别为10 ns和1.7%;针对波长-时间映射型LCFBG传感器,提出了一种二维时间映射数据处理方法,将脉冲信号的一维时间映射为二维时间,从而将脉冲信号转换为二维图形,再通过一系列变换,就可获得爆轰波、冲击波波阵面位置的二维图形。为验证该技术的有效性,用波长-时间映射型LCFBG传感器测量了JB-9014炸药的爆轰波波阵面位置,对位置曲线进行线性拟合得到的爆轰波速度为7.58 km/s,与电探针测量值7.63 km/s能很好地吻合,相对偏差小于1%。
  • 图  1  波长-时间映射型LCFBG传感器的结构示意图

    Figure  1.  Sketch of the wavelength-time mapping LCFBG sensor

    图  2  有机玻璃中冲击波波阵面位置测量的脉冲信号

    Figure  2.  Pulse signal for measuring the wave-front position of the shock wave in the PMMA

    图  3  3个不同时刻附近的10 ns周期信号

    Figure  3.  Periodic signals at various 10 ns time slice windows

    图  4  脉冲信号的二维映射图形

    Figure  4.  Two dimensional mapping figure of the pulse signal

    图  5  LCFBG的二维图形

    Figure  5.  Two dimensional mapping figure of the LCFBG

    图  6  LCFBG的动态长度曲线

    Figure  6.  LCFBG length versus time

    图  7  JB-9014炸药爆轰波波阵面位置测量实验布局

    Figure  7.  Configuration for measuring the wave-front position of the JB-9014 explosive

    图  8  数字示波器记录的脉冲信号

    Figure  8.  Experimental signals recorded by digital oscilloscope

    图  9  爆轰波波前位置曲线

    Figure  9.  Curve of wavefront movement

  • [1] HILL L G, BDZIL J B, ASLAM T D. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX9502 over a wide temperature [C]//Proceeding of Eleventh Symposium (International) on Detonation. Colorado: Office of Naval Research, 1997: 1029−1037.
    [2] BDZIL J B, FICKETT W, STEWART D S. Detonation shock dynamics: a new approach to modeling multi-dimensional detonation waves [C]//Proceedings of the Ninth Symposium (International) on Detonation. Portland: OR, 1989: 730−742.
    [3] ASLAM T D, BDZIL J B, HILL L G. Extensions to DSD theory: analysis of PBX 9502 rate stick data [C]//Proceedings of the Eleventh International Detonation Symposium. Snowmass: CO, 1998: 21−29.
    [4] 徐森, 刘大斌, 彭金华, 等. 药柱冲击波在有机玻璃中的衰减特性研究 [J]. 高压物理学报, 2010, 24(6): 421–437 doi: 10.11858/gywlxb.2010.06.005

    XU Sen, LIU Dabin, PENG Jinhua, et al. Study on the shock wave attenuation of the booster charge in the PMMA gap [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 421–437 doi: 10.11858/gywlxb.2010.06.005
    [5] BENTEROUT J J, UDD E, WILKINS P, et al. In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors [C]//Proceedings of the 34th International Pyrotechnics Seminar V1. Beaune, France, 2007: 309−322.
    [6] HARE D E, HOLTKAMP D B, STRAND O T. Embedded fiber optic probes to measure detonation velocities using the photonic Doppler velocimeter: LLNL-PROC-425117 [R]. Livermore: Lawrence Livermore National Laboratory, 2010.
    [7] MERCIER P, BENIER J, FRUGIER P A, et al. Nitromethane ignition observed with embedded PDV optical fibers [C]. EPJ Web of Conferences. EDP Sciences, 2010, 10: 00016.
    [8] RODRIGUEZ G, STEVE M G. Ultrafast fiber Bragg grating interrogation for sensing in detonation and shock wave experiments [J]. Sensors, 2017, 17: 248.
    [9] 邓向阳, 刘寿先, 彭其先, 等. 测量炸药旁侧爆轰波速度的啁啾光纤布拉格光栅传感器技术 [J]. 爆炸与冲击, 2015, 35(2): 191–196 doi: 10.11883/1001-1455(2015)02-0191-06

    DENG Xiangyang, LIU Shouxian, PENG Qixian, et al. Chirped fiber Bragg grating sensor for side detonation velocity measurement of the explosion [J]. Explosion and Shock Waves, 2015, 35(2): 191–196 doi: 10.11883/1001-1455(2015)02-0191-06
    [10] PENG W, HAO L, LIU T L, et al. Detonation velocity measurement with chirped fiber Bragg grating [J]. Sensor, 2017, 17: 2252.
    [11] GODA K, SOLLI D R, TSIA K K, et al. Theory of amplified dispersive Fourier transformation [J]. Physical Review A, 2009, 80(4): 043821.
    [12] 谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究 [J]. 爆炸与冲击, 2003, 23(4): 300–304

    TAN Duowang, FANG Qing, ZHANG Guangsheng, et al. Experimental study on the diameter effect for JB-9014 rate sticks [J]. Explosion and Shock Waves, 2003, 23(4): 300–304
  • 加载中
图(9)
计量
  • 文章访问数:  5820
  • HTML全文浏览量:  1990
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-05-15
  • 网络出版日期:  2019-02-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回