高速破片撞击充液容器时容器壁面的损伤

马丽英 李向东 周兰伟 蓝肖颖 宫小泽 姚志军

马丽英, 李向东, 周兰伟, 蓝肖颖, 宫小泽, 姚志军. 高速破片撞击充液容器时容器壁面的损伤[J]. 爆炸与冲击, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009
引用本文: 马丽英, 李向东, 周兰伟, 蓝肖颖, 宫小泽, 姚志军. 高速破片撞击充液容器时容器壁面的损伤[J]. 爆炸与冲击, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009
MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009
Citation: MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009

高速破片撞击充液容器时容器壁面的损伤

doi: 10.11883/bzycj-2018-0009
基金项目: 

国家自然科学基金面上项目 11572159

详细信息
    作者简介:

    马丽英(1990-), 女, 硕士, maliying10102013@163.com

    通讯作者:

    李向东(1969-), 男, 博士, 教授, lixiangd@njust.edu.cn

  • 中图分类号: O385

Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel

  • 摘要: 为研究高速破片(钨球)撞击充液容器(贯穿前后壁面)时容器壁面的毁伤情况,利用ANSYS/LS-DYNA对该过程进行了数值模拟,分析了破片撞击动能对充液容器前后壁面毁伤程度的影响,并进行实验验证。结果表明:高速破片撞击充液容器形成的液压水锤对充液容器前后壁面的破坏程度可分为3个等级,即前后壁面均未出现裂纹、前壁面没有出现裂纹后壁面出现裂纹和前后壁面均出现裂纹且后壁面呈花瓣式开裂;破片撞击充液容器过程中,前后壁面的最大变形量和前后壁面的裂纹总数随破片撞击动能的增加而增大。
  • 图  1  有限元模型

    Figure  1.  Finite element model

    图  2  实验装置及布置示意图

    Figure  2.  Experiment device and layout diagram

    图  3  充液容器实物图

    Figure  3.  Liquid-filled vessel

    图  4  前后面板毁伤情况(实验和三维扫描)

    Figure  4.  Front and rear walls damage (experiment and three-dimensional scan)

    图  5  前后面板毁伤情况(实验与仿真)

    Figure  5.  Front and rear walls damage (experiment and numerical simulation)

    图  6  前后壁不同位置处峰值压力曲线

    Figure  6.  Front and rear wall pressure changes with distance

    图  7  不同阶段压力变化曲线

    Figure  7.  Pressure change curve in different stages

    图  8  前壁面不同位置处压力时间曲线

    Figure  8.  Pressure time curve at the different positions of the front wall

    图  9  后壁面不同位置处压力时间曲线

    Figure  9.  Pressure time curve at the different positions of the rear wall

    图  10  压力动能曲线

    Figure  10.  Pressure-kinetic energy curve

    图  11  容器前后壁面的变形情况(单位:mm)

    Figure  11.  Deformation of the front and rear walls change with time (unit: mm)

    图  12  前后壁面变形量时间曲线

    Figure  12.  Front and rear walls displacement time curve

    图  13  前壁面变形量时间曲线

    Figure  13.  Front wall displacement time curves

    图  14  后壁面变形量时间曲线

    Figure  14.  Rear wall displacement time curves

    图  15  破片撞击动能与充液容器前后壁面变形量的关系图

    Figure  15.  Relationship between the kinetic energy of the fragment and the deformation of the front and rear wall

    图  16  充液容器前后壁面的裂纹数量与破片撞击动能关系

    Figure  16.  Relationship between the kinetic energy of the fragment and the number of cracks in the front and rear walls

    表  1  前后面板材料参数

    Table  1.   Material parameters of front and rear walls

    材料 ρ/(kg·m-3) E/GPa μ A/MPa B/MPa C n m
    铝2024-T4 2797 69.63 0.33 265 462 0.015 0.34 1.0
    注:ρ-密度,E-弹性模量,μ-泊松比,A-屈服强度,B-应变硬化洗漱,C-应变率相关系数,n-应变硬化指数,m-温度相关系数.
    下载: 导出CSV

    表  2  Grüneisen状态方程参数

    Table  2.   Parameters of Grüneisen EOS

    体积声速/(m·s-1) us-up曲线斜率 Grüneisen常数
    5 286 1.4 2.0
    下载: 导出CSV

    表  3  破片材料参数

    Table  3.   Material parameters of fragment

    材料 密度/(kg·m-3) 弹性模量/GPa 泊松比
    17 600 350 0.284
    下载: 导出CSV

    表  4  水和空气的主要材料参数表

    Table  4.   Material parameters of water and air

    材料 密度/(kg·m-3) 体积声速/(m·s-1) us-up曲线斜率 C4 C5
    1 000 1 480 1.979 - -
    空气 1.25 - - 0.4 0.4
    下载: 导出CSV

    表  5  部分实验情况及结果表

    Table  5.   Part of the experimental situation and results

    日期-发序 m/g v0/(m·s-1) vr/(m·s-1) E0/J δf/cm δr/cm
    2016.12.23 -2 4.04 768 453 1 191.44 0.17 0.61
    2016.12.23-3 4.03 1 049 699 2 217.31 0.48 0.98
    2016.12.23-4 4.04 1 097 757 2 430.87 0.64 1.23
    2016.12.23-5 4.01 1 399 933 3 924.19 0.68 2.87
    2016.12.23-8 4.05 1 560 1 066 4 928.04 0.98 2.48
    2017.03.26-1 8.10 1 028 755.8 4 279.98 0.69 2.69
    2017.03.26-2 8.04 1 077.5 772.8 4 667.25 0.56 1.77
    2017.03.26-3 8.14 1 026.7 740.1 4 290.24 0.59 21.9
    2017.03.26-7 8.09 885.7 594.14 3 173.16 0.44 1.65
    2017.03.26-8 8.08 1 130 808 5 158.68 0.70 3.14
    2017.04.15-1 8.11 724.8 551.9 2 130.23 0.49 1.67
    2017.04.15-2 8.06 1 238 948.1 6 176.56 1.19 4.12
    2017.04.15-5 8.12 1 417 1 010 8 152.03 1.35 4.36
    2017.04.15-6 8.11 1 554 1 082 9 792.48 1.31 4.07
    注:m-破片质量,v0-破片撞击速度,vr-破片穿出容器后剩余速度,E0-破片撞击动能,δf-前壁面最大变形量,δr-后壁面最大变形量
    下载: 导出CSV

    表  6  试验与数值仿真中破片剩余速度对比

    Table  6.   Comparison of residual velocities in experiment and numerical simulation

    日期-发序 E0/J vr/(m·s-1) 误差/% δf/cm 误差/% δr/cm 误差/%
    实验 计算 实验 计算 实验 计算
    2016.12.23-2 1 191 453 429 5.3 0.17 0.19 -11.76 0.61 0.66 -8.20
    2017.03.26-2 4 667 772.8 761 1.4 0.56 0.63 -12.5 1.77 1.57 11.29
    2017.04.15-6 9 792 1 082 1123.9 -3.9 1.31 1.29 1.5 4.07 3.49 14.25
    下载: 导出CSV
  • [1] D'ALESSANDRO V. Modeling of tank vehicle dynamics by fluid sloshing coupled simulation[D]. Italy, 2012. https://www.politesi.polimi.it/handle/10589/56762
    [2] LINGENFELTER A J, LIU D, REEDER M F. Time resolved flow field measurements of orifice entrainment during a hydrodynamic ram event[J]. Journal of Visualization, 2017, 20(1):63-74. DOI: 10.1007/s12650-016-0378-2.
    [3] FOUREST T, LAURENS J M, DELETOMBE E, et al. Confined Rayleigh-Plesset equation for hydrodynamic ram analysis in thin-walled containers under ballistic impacts[J]. Thin-Walled Structures, 2015, 86:67-72. DOI: 10.1016/j.tws.2014.10.003.
    [4] MOUSSA N A. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris: DOT/FAA/AR-96/95[R]. Springfield: National Technical Information Service, 1997.
    [5] BALL R E, POWER H L, FUHS A E. Fuel tank wall response to hydraulic ram during the shock phase[J]. Journal of Aircraft, 1973, 10(9):571-572. DOI: 10.2514/3.44393.
    [6] DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. DOI: 10.1016/j.ijimpeng.2010.10.006.
    [7] CHARLES A, DELETOMBE E, DUPAS J. A numerical study on cavity expansion in water:hydraulic ram under ballistic impacts[J]. Structures Under Shock and Impact Ⅻ, 2013, 126:203. DOI: 10.2495/SU120181.
    [8] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA journal, 2012, 50(7):1621-1630. DOI: 10.2514/1.J051613.
    [9] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. DOI: 10.1016/j.ijimpeng.2008.04.006.
    [10] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and technology, 2012, 16(1):19-28. DOI: 10.1016/j.ast.2011.02.003.
    [11] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. DOI:10.1016/j.ijimpeng. 2008.07.020.
    [12] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016. DOI:10.1016/j.ijimpeng. 2005.06.010.
    [13] KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank[J]. Journal of Pressure Vessel Technology, 2016, 138(4):041303. DOI: 10.1115/1.4032447.
    [14] KWON Y, YUN K. Numerical parametric study of hydrodynamic ram[J]. International Journal of Multiphysics, 2017, 11(1):15-47. DOI: 10.21152/1750-9548.11.1.15.
    [15] 蒋运华, 徐胜利, 周杰.运动体小扰动下入水空泡试验研究[J].弹道学报, 2016, 28(1):81-86. DOI:10.3969/j.issn.1004-499X. 2016.01.015.

    JIANG Yunhua, XU Shengli, ZHOU Jie. Experimental study on water entry cavity for vehicle with small perturbation[J]. Journal of Ballistics, 2016, 28(1):81-86. DOI:10.3969/j.issn.1004-499X. 2016.01.015.issn. 1004-499X. 2016.01.015.
    [16] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. doi: 10.11883/1001-1455(2011)06-0579-06

    ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experiment investigation on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. doi: 10.11883/1001-1455(2011)06-0579-06
    [17] 郭子涛.弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209
    [18] 李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. DOI: 10.11883/1001-1455(2016)01-0001-08.

    LI Dian, ZHU Xi, HOU Hailiang, et al. Finite element analysis of load characteristic of liquid-filed structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1):1-8. DOI: 10.11883/1001-1455(2016)01-0001-08.
    [19] 仲强, 侯海量, 朱锡, 等.陶瓷/液舱复合结构抗侵彻数值分析[J].爆炸与冲击, 2017, 37(3):510-519. DOI: 10.11883/1001-1455(2017)03-0510-10.

    ZHONG Qiang, HOU Hailiang, ZHU Xi, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion and Shock Waves, 2017, 37(3):510-519. DOI: 10.11883/1001-1455(2017)03-0510-10.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  6585
  • HTML全文浏览量:  2300
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 修回日期:  2018-04-13
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回