厚度幂指数分布管状结构耐撞性设计准则与方法研究

徐峰祥 张锁 武昆迎

徐峰祥, 张锁, 武昆迎. 厚度幂指数分布管状结构耐撞性设计准则与方法研究[J]. 爆炸与冲击, 2019, 39(3): 035103. doi: 10.11883/bzycj-2018-0013
引用本文: 徐峰祥, 张锁, 武昆迎. 厚度幂指数分布管状结构耐撞性设计准则与方法研究[J]. 爆炸与冲击, 2019, 39(3): 035103. doi: 10.11883/bzycj-2018-0013
XU Fengxiang, ZHANG Suo, WU Kunying. Study on crashworthiness design criteria and method of tubular structures with power exponent distribution of thickness[J]. Explosion And Shock Waves, 2019, 39(3): 035103. doi: 10.11883/bzycj-2018-0013
Citation: XU Fengxiang, ZHANG Suo, WU Kunying. Study on crashworthiness design criteria and method of tubular structures with power exponent distribution of thickness[J]. Explosion And Shock Waves, 2019, 39(3): 035103. doi: 10.11883/bzycj-2018-0013

厚度幂指数分布管状结构耐撞性设计准则与方法研究

doi: 10.11883/bzycj-2018-0013
基金项目: 国家自然科学基金(51605353);中国汽车产业创新发展联合基金(U1564202);新能源汽车科学与关键技术学科创新引智基地项目(B17034)
详细信息
    作者简介:

    徐峰祥(1985- ),男,博士,副教授,xufx@whut.edu.cn

  • 中图分类号: O347; TU311; P315.9

Study on crashworthiness design criteria and method of tubular structures with power exponent distribution of thickness

  • 摘要: 厚度或质量连续分布技术对车身薄壁结构的轻量化和性能设计有着非常重要,甚至起到决定性的作用,从设计方法上研究连续变厚度结构在车身零部件中的耐撞性应用是安全性设计所需的主要工作。本文研究一种较新颖的薄壁吸能结构,其管壁厚度按照幂指数形式连续分布,根据此分布特点推导出了该薄壁结构在等质量条件下与其他管状结构(比如均匀管、拼焊管和锥管等)之间相关参数的定量解析关系,给出了前者的耐撞性设计准则,评估了不同梯度对幂指数管耐撞性能的影响。分析结果显示,该新颖管状结构比其他截面管具有更理想的耐撞特性。然后,在2个设计区间内对梯度指数分别采样并构造近似模型,采用遗传算法作为求解器得出了非劣解前沿,研究发现高阶响应面近似模型得到的设计结果不一定是最优的。
  • 图  1  厚度连续递增的薄壁结构轴向碰撞示意图

    Figure  1.  Schematic of thin-walled structures with thickness increasing under axial crashing

    图  2  厚度比沿着长度方向的变化情况

    Figure  2.  Thickness changes of thin-walled structures along the length direction

    图  3  幂指数管状结构示意图

    Figure  3.  Schematic showing thickness grading patterns in the axial direction

    图  4  材料应力应变曲线

    Figure  4.  Stress-strain curve of material

    图  5  幂指数分布管(FGT)的试验测试和数值结果比较

    Figure  5.  Comparisons of experimental and numerical results for tubes with power exponent (FGT)

    图  6  变厚度管和锥管的示意图

    Figure  6.  Schematics of variable thickness and tapered tubes

    图  7  三种管结构的有限元模型

    Figure  7.  Finite element model of three tubular structures

    图  8  三种管状结构的吸能特性对比

    Figure  8.  Comparisons of energy absorption capacity of three kinds of tubes

    图  9  幂指数分布管和锥管在不同情况下的碰撞性能对比

    Figure  9.  Crashing performance of tubular structures with power exponent and tapered angles

    图  10  不同响应面模型(RSM)的幂指数分布管(FGT)和均匀管(UT)的Pareto前沿解

    Figure  10.  Pareto solutions of tubular structures with power exponent (FGT) and uniform thickness (UT) by different response surface models (RSMs)

    表  1  三种管状结构在相同质量下的厚度分布

    Table  1.   Thickness distributions of three tubes with the same weight

    ntU/mmt1/mmt2/mmntU/mmt1/mmt2/mm
    0.22.0411.7592.11741.0940.8151.356
    0.41.9431.5172.04161.0170.8021.218
    0.61.6681.3451.97280.9740.8001.137
    0.81.5751.2191.908100.9470.8001.085
    21.2740.9051.621
    下载: 导出CSV

    表  2  比吸能响应面近似模型的精度评估(0≤n≤1)

    Table  2.   Accuracy estimate of response surface model of SAE (0≤n≤1)

    目标函数阶数R2δavgδmax
    SAEG10.952 960.151 600.750 46
    20.953 350.148 300.752 92
    30.953 940.149 120.745 72
    40.954 960.146 500.740 61
    SAEU10.993 740.065 280.151 81
    20.994 780.067 320.116 77
    30.995 120.064 120.118 13
    40.995 130.063 760.120 22
    下载: 导出CSV

    表  3  比吸能响应面近似模型的精度评估(1<n≤10)

    Table  3.   Accuracy estimate of response surface model of SAE (1<n≤10)

    目标函数阶数R2δavgδmax
    SAEG10.987 450.072 090.295 03
    20.991 130.062 970.252 97
    30.993 730.054 780.186 99
    40.995 250.059 800.190 98
    SAEU10.924 910.166 160.709 09
    20.925 660.167 220.724 94
    30.932 140.200 660.658 86
    40.933 110.163 120.667 10
    下载: 导出CSV
  • [1] 杜继涛, 甘屹, 齐从谦. TRB及其轧制应用关键技术 [J]. 汽车技术, 2007(7): 45–48 doi: 10.3969/j.issn.1000-3703.2007.07.013

    DU Jitao, GAN Yi, QI Congqian. Tailor rolled blanks and keys technologies in its rolling applications [J]. Automobile Technology, 2007(7): 45–48 doi: 10.3969/j.issn.1000-3703.2007.07.013
    [2] 何安瑞, 邵健, 孙文权, 等. 冷轧无取向硅钢横向厚差控制 [J]. 机械工程学报, 2011, 47(10): 25–30

    HE Anrui, SHAO Jian, SUN Wenquan, et al. Transverse thickness deviation control of non-oriented silicon steel during cold rolling [J]. Journal of Mechanical Engineering, 2011, 47(10): 25–30
    [3] 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析 [J]. 机械工程学报, 2014, 50(17): 38–45

    ZHAO Chunzhang, YU Haidong, WANG Hao, et al. Dynamic modeling and kinematic behavior of variable cross-section beam based on the absolute nodal coordinate formulation [J]. Journal of Mechanical Engineering, 2014, 50(17): 38–45
    [4] 杜继涛, 齐从谦. 变截面薄板在车身制造中的应用研究 [J]. 锻压技术, 2005, 30(S1): 39–43 doi: 10.3969/j.issn.1000-3940.2005.z1.011

    DU Jitao, QI Congqian. Research on applications of variable section blanks in the auto-body manufacturing [J]. Forging & Tamping Technology, 2005, 30(S1): 39–43 doi: 10.3969/j.issn.1000-3940.2005.z1.011
    [5] 徐春国, 任广升, 袁相勇, 等. 轴类件的柔性辊轧成形工艺与实验研究 [J]. 塑性工程学报, 2008, 15(2): 100–104

    XU Chunguo, REN Guangsheng, YUAN Xiangyong, et al. The research on the process of flexible rolling for shaft forgings and experiment [J]. Journal of Plasticity Engineering, 2008, 15(2): 100–104
    [6] 袁相勇, 徐春国, 任广升. 轴向辊轧轧件与轧轮接触面理论分析 [J]. 锻压技术, 2005, 30(S1): 156–159 doi: 10.3969/j.issn.1000-3940.2005.z1.046

    YUAN Xiangyong, XU Chunguo, REN Guangsheng. Theoretic analysis of contact surfaces between workpiece and roller of axial feed bar rolling [J]. Forging & Stamping Technology,, 2005, 30(S1): 156–159 doi: 10.3969/j.issn.1000-3940.2005.z1.046
    [7] 袁海伦, 王泽武, 曾青, 等. 异形截面环件虚拟轧制及其工艺优化 [J]. 塑性工程学报, 2006, 13(6): 15–18 doi: 10.3969/j.issn.1007-2012.2006.06.004

    YUAN Hailun, WANG Zewu, ZENG Qing, et al. Virtual ring rolling and the process optimization of profile ring [J]. Journal of Plasticity Engineering, 2006, 13(6): 15–18 doi: 10.3969/j.issn.1007-2012.2006.06.004
    [8] 王宏雁, 君毅. 汽车车身轻量化结构与轻质材料 [M]. 北京: 北京大学出版社, 2009.

    WANG Hongyan, JUN Yi. Lightweight structures and mateiral of automotive body [M]. Beijing: Beijing Univeristy Press, 2009.
    [9] KOPP R, WIEDNER C, MEYER A. Flexibly rolled sheet metal and its use in sheet metal forming [J]. Sheet Metal, 2005, 6-8: 81–92.
    [10] KOPP R, WIEDNER C, MEYER A. Flexible rolling for load-adapted blanks [J]. International Sheet Metal Review, 2005, 4: 20–24.
    [11] 包向军. 变截面薄板弯曲成形回弹的试验研究和数值模拟: [D]. 上海: 上海交通大学, 2003.

    BAO Xiangjun. Experimental and numerical study on springback of tailor rolled blanks in rotary bending [D]. Shanghai: Shanghai jiaotong University, 2003.
    [12] 任灏宇, 杜继涛. 连续变截面板的轧制控制 [J]. 机械制造与自动化, 2008, 37(2): 143–144 doi: 10.3969/j.issn.1671-5276.2008.02.050

    REN Haoyu, DU Jitao. Roll control of tailor rolled Blanks [J]. Machine Building & Automation, 2008, 37(2): 143–144 doi: 10.3969/j.issn.1671-5276.2008.02.050
    [13] 姜银方, 方雷, 李志飞, 等. 连续变截面板及其应用中存在的关键问题 [J]. 制造技术与机床, 2011(1): 144–148 doi: 10.3969/j.issn.1005-2402.2011.01.043

    JIANG Yinfang, FANG Lei, LI Zhifei, et al. The key technologies in tailor rolled blanks and its application [J]. Manufacturing Technology & Machine Tool, 2011(1): 144–148 doi: 10.3969/j.issn.1005-2402.2011.01.043
    [14] CHUANG C, YANG R, LI G, et al. Multidisciplinary design optimization on vehicle tailor rolled blank design [J]. Structural and Multidisciplinary Optimization, 2008, 35(6): 551–560. doi: 10.1007/s00158-007-0152-0
    [15] YANG R J, FU Y, LI G. Application of tailor rolled blank in vehicle front end for frontal impact [J]. SAE Technical Paper, 2007
    [16] 兰凤崇, 李佳光, 马芳武, 等. 连续变截面板(TRB 板)在汽车前纵梁中的应用及优化分析 [J]. 机械设计与制造, 2014(1): 25–28, 32 doi: 10.3969/j.issn.1001-3997.2014.01.008

    LAN Fengchong, LI Jiaguang, MA Fangwu, et al. The application and optimization analysis of tailor rolled board on automotive front rail structure [J]. Machinery Design & Manufacture, 2014(1): 25–28, 32 doi: 10.3969/j.issn.1001-3997.2014.01.008
    [17] ZHANG X, ZHANG H. Optimal design of functionally graded foam material under impact loading [J]. International Journal of Mechanical Sciences, 2013, 68: 199–211. doi: 10.1016/j.ijmecsci.2013.01.016
    [18] YIN H, WEN G, HOU S, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes [J]. Materials & Design, 2011, 32(8−9): 4449–4460.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  5440
  • HTML全文浏览量:  1602
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-08
  • 修回日期:  2018-01-24
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回