纯钒在冲击加载下的动态拉伸断裂和弹性波衰减特性

李雪梅 俞宇颖 胡昌明 张祖根 彭建祥 王为

李雪梅, 俞宇颖, 胡昌明, 张祖根, 彭建祥, 王为. 纯钒在冲击加载下的动态拉伸断裂和弹性波衰减特性[J]. 爆炸与冲击, 2019, 39(1): 013101. doi: 10.11883/bzycj-2018-0037
引用本文: 李雪梅, 俞宇颖, 胡昌明, 张祖根, 彭建祥, 王为. 纯钒在冲击加载下的动态拉伸断裂和弹性波衰减特性[J]. 爆炸与冲击, 2019, 39(1): 013101. doi: 10.11883/bzycj-2018-0037
LI Xuemei, YU Yuying, HU Changming, ZHANG Zugen, PENG Jianxiang, WANG Wei. Dynamic tensile fracture and the decay of elastic precursor wave in shocked pure vanadium[J]. Explosion And Shock Waves, 2019, 39(1): 013101. doi: 10.11883/bzycj-2018-0037
Citation: LI Xuemei, YU Yuying, HU Changming, ZHANG Zugen, PENG Jianxiang, WANG Wei. Dynamic tensile fracture and the decay of elastic precursor wave in shocked pure vanadium[J]. Explosion And Shock Waves, 2019, 39(1): 013101. doi: 10.11883/bzycj-2018-0037

纯钒在冲击加载下的动态拉伸断裂和弹性波衰减特性

doi: 10.11883/bzycj-2018-0037
详细信息
    作者简介:

    李雪梅(1975-), 女, 硕士, 副研究员, lixuem@caep.cn

  • 中图分类号: O382.3

Dynamic tensile fracture and the decay of elastic precursor wave in shocked pure vanadium

  • 摘要: 利用平板撞击和激光干涉测速技术,实验研究了国产热等静压纯钒在压力5.2~9.0 GPa、拉伸应变率0.47×105~1.19×105 s-1冲击加载下的层裂特性。结果表明:国产热等静压纯钒具有较强的抗动态拉伸断裂能力,其层裂强度在4.0~5.3 GPa范围,明显高于相似加载条件下文献给出的熔炼钒结果,这主要与热等静压加工工艺下纯钒杂质含量更低、内缺陷更少有关;同时,纯钒层裂强度对冲击压力和拉伸应变率均比较敏感。此外,对弹塑性加载速度剖面的分析发现:在6 mm样品厚度范围,纯钒的弹性波幅值随样品厚度增大而减小,雨贡纽弹性极限随样品厚度的衰减规律较好地满足指数关系σHEL=3.246(hs/h0-0.386h0为单位长度。
  • 图  1  层裂实验装置及实验原理

    Figure  1.  Schematic of the experimental configuration

    图  2  纯钒的自由面速度剖面汇总

    Figure  2.  Measured free-surface velocity profiles of HIP vanadium at different impact velocities

    图  3  HIP纯钒层裂强度随加载压力和应变率的变化关系

    Figure  3.  The dependence of spall strength for vanadiumon shock pressure and tensile strain rate

    图  4  不同实验给出的纯钒层裂强度比较

    Figure  4.  Comparison of spall strengths obtainedby different experiments for pure vanadium

    图  5  纯钒的弹塑性加载波特征

    Figure  5.  Elastic-plastic wave characteristics of HIP vanadium

    图  6  纯钒的Hugoniot弹性极限随样品厚度的衰减规律

    Figure  6.  Decay of elastic wave with sample thickness for pure vanadium

    表  1  HIP纯钒的主要杂质成分

    Table  1.   The main impurities of HIP vanadium

    杂质元素a) C N O Al Fe Cr Si
    质量分数/% 0.005 2 0.002 6 0.020 0.016 <0.005 <0.005 0.018
    注:a)除Al和Si外,其余杂质含量均优于GB4310-84≪钒≫中V-1牌号熔炼钒的指标。
    下载: 导出CSV

    表  2  纯钒对称碰撞层裂实验参数及结果

    Table  2.   Summary of experimental parameters

    实验编号 wf/(m·s-1) hf/mm hs/mm σH /GPa σsp/GPaa) ${{\bar {\dot \varepsilon} }_{\rm{s}}}$/s-1 σHEL/GPa Y/GPa
    No.1 321 3.051 6.055 5.2 4.0(3.6) 0.47×105 1.7 0.7
    No.2 460 3.050 6.051 7.5 4.3(3.6) 0.62×105 1.8 0.8
    No.3 525 3.064 6.055 8.6 5.0(3.9) 0.66×105 1.8 0.8
    No.4 540 1.457 3.045 9.0 5.3(4.4) 1.19×105 2.0 0.9
    注:a)括号内的值为不考虑回跳速度修正得到的层裂强度。
    下载: 导出CSV
  • [1] SMITH D L, CHUNG H M, LOOMIS B A. Development of vanadium-base alloys for fusion first-wall-blanket applications[J]. Fusion Engineering and Design, 1995, 29:399-410. DOI: 10.1016/0920-3796(95)80046-Z.
    [2] CHUNG H M, LOOMIS B A, SMITH D L. Development and testing of vanadium alloys for fusion applications[J]. Journal of Nuclear Materials, 1996, 239:139-156. DOI: 10.1016/S0022-3115(96)00676-9.
    [3] FUKUMOTO K, MATSUI H, TSAI H, et al. Mechanical behavior and microstructural evolution of vanadium alloys irradiated in ATR-A1[J]. Journal of Nuclear Materials, 2000, 283-287(part 1):492-497. DOI: 10.1016/S0022-3115(00)00310-X.
    [4] TAKAHASHI H, OHNUKI S, KINOSHITA H, et al. The effects of damage structures on mechanical properties of neutron irradiated vanadium[J]. Journal of Nuclear Materials, 1988, 155-157(part 2):982-986. DOI: 10.1016/0022-3115(88)90453-9.
    [5] EPOV G A. Void evolution simulation in neutron-irradiated vanadium[J]. Journal of Nuclear Materials, 1996, 230(1):84-90. DOI: 10.1016/0022-3115(95)00156-5.
    [6] 冷邦义, 鲜晓斌, 庞晓轩, 等.纯钒的高温力学性能及断口特征[J].稀有金属材料与工程, 2011, 40(8):1470-1472. DOI: 10.3103/S1067821211040110.

    LENG Bangyi, XIAN Xiaobin, PANG Xiaoxuan, et al. High temperature mechanical properties and fracture characteristics of pure vanadium[J]. Rare Metal Materials and Engineering, 2011, 40(8):1470-1472. DOI: 10.3103/S1067821211040110.
    [7] 鲜晓斌, 叶林森, 冷邦义, 等.纯钒制备及其性能[J].稀有金属材料与工程, 2010, 39(5):928-931. DOI: 10.3321/j.issn:1002-185X.2010.05.039.

    XIAN Xiaobin, YE Linsen, LENG Bangyi, et al. Study on preparation and properties of pure vanadium[J]. Rare Metal Materials and Engineering, 2010, 39(5):928-931. DOI: 10.3321/j.issn:1002-185X.2010.05.039.
    [8] 叶林森, 鲜晓斌, 迟永刚, 等.热等静压纯钒性能研究[C]//中国材料研讨会.长沙, 2012: 1-5.
    [9] 谢若泽, 胡文军, 黄西成, 等.纯钒的动态压缩力学性能实验研究[J].中国测试, 2016, 42(10):40-44. DOI: 10.11857/j.issn.1674-5124.2016.10.008.

    XIE Ruoze, HU Wenjun, HUANG Xicheng, et al. Experimental study on dynamic compressive mechanical properties of pure vanadium[J]. China Measurement and Test, 2016, 42(10):40-44. DOI: 10.11857/j.issn.1674-5124.2016.10.008.
    [10] LENNON A M, RAMESH K T. A technique for measuring the dynamic behavior of materials at high temperatures[J]. International Journal of Plasticity, 1998, 14(12):1279-1292. DOI: 10.1016/S0749-6419(98)00056-4.
    [11] NEMAT-NASSER S, GUO Weiguo. High strain-rate response of commercially pure vanadium[J]. Mechanics of Materials, 2000, 32(4):243-260. DOI: 10.1016/S0167-6636(99)00056-3.
    [12] FLORANDO J N, JIAO T, GRANSCHEL S E, et al. High rate plasticity under pressure using a windowed pressure-shear impact experiment: LLNL-PROC-417930[R]. USA: LLNL, 2009.
    [13] YU Yuying, TAN Ye, DAI Chengda, et al. Phase transition and strength of vanadium under shock compression up to 88GPa[J]. Applied Physics Letters, 2014, 105(20):201910. DOI: 10.1063/1.4902374.
    [14] 俞宇颖, 谭叶, 戴诚达, 等.钒的高压声速测量[J].物理学报, 2014, 63(2):026202. DOI: 10.7498/aps.63.026202.

    YU Yuying, TAN Ye, DAI Chengda, et al. Sound velocities of vanadium under shock compression[J]. Acta Physica Sinica, 2014, 63(2):026202. DOI: 10.7498/aps.63.026202.
    [15] ZARETSKY E B, KANEL G I. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures:Non-monotonous decay of the elastic wave in vanadium[J]. Journal of Applied Physics, 2014, 115(24):243502. DOI: 10.1063/1.4885047.
    [16] KANEL G I, RAZORENOV S V, GARKUSHIN G V, et al. Stress relaxation in vanadium under shock and shockless dynamic compression[J]. Journal of Applied Physics, 2015, 118(4):045901. DOI: 10.1063/1.4927613.
    [17] SAVELEVA N V, BAYANDIN Y V, SAVINYKH A S, et al. Peculiarities of the elastic-plastic transition and failure in polycrystalline vanadium under shock wave loading conditions[J]. Technical Physics Letters, 2015, 41(6):579-582. DOI: 10.1134/S1063785015060292.
    [18] ASHITKAV S I, KOMAROV P S, STRULEVA E V, et al. Mechanical and optical properties of vanadium under shock picosecond loads[J]. JETP Letters, 2015, 101(4):276-281. DOI: 10.1134/S0021364015040049.
    [19] WENG Jidong, TAN Hua, HU Shaolou. New all-fiber velocimeter[J]. Review of Scientific Instrumentss, 2005, 76(9):93301. DOI: 10.1063/1.2008989.
    [20] CHHABILDAS L C, HILLS C R. Dynamic shock studies of vanadium: SAND-85-0322C[R]. USA: SNL, 1985.
    [21] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture[M]. New York:Springer-Verlag, 2003:95-99.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  4725
  • HTML全文浏览量:  1540
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-11-14
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回