混凝土骨料对高速侵彻弹体质量侵蚀的影响分析

欧阳昊 陈小伟

欧阳昊, 陈小伟. 混凝土骨料对高速侵彻弹体质量侵蚀的影响分析[J]. 爆炸与冲击, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068
引用本文: 欧阳昊, 陈小伟. 混凝土骨料对高速侵彻弹体质量侵蚀的影响分析[J]. 爆炸与冲击, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068
OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068
Citation: OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068

混凝土骨料对高速侵彻弹体质量侵蚀的影响分析

doi: 10.11883/bzycj-2018-0068
详细信息
    作者简介:

    欧阳昊(1989- ),男,博士研究生,助理研究员, oyhustc1989@163.com

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O385

Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target

  • 摘要: 高速侵彻时,弹靶之间发生强烈的局部作用,引起弹体头部发生质量侵蚀,从而影响弹体的侵彻性能。在弹体侵彻过程中,混凝土中的骨料对弹体的质量侵蚀有显著影响。本文通过对高速侵彻混凝土弹体的质量侵蚀实验数据进行分析,进一步分析讨论了混凝土骨料对弹体质量侵蚀的影响。将混凝土靶体视为骨料和砂浆基质混合的二相复合材料,引入混凝土骨料的体积分数χ和骨料的剪切强度τ1代替骨料的莫氏硬度H,给出无量纲骨料修正因子β,建立了修正的弹体质量损失工程模型。模型预测结果与现有的实验数据符合得很好,更准确地表征了混凝土骨料对弹体质量损失的影响。
  • 图  1  无量纲骨料修正因子β

    Figure  1.  Dimensionless modified factor β

    图  2  弹体相对质量损失预测结果与实验数据对比(工况1-1)

    Figure  2.  Predicted relative mass loss of the projectile compared with experimental data (Case 1-1)

    图  3  弹体相对质量损失预测结果与实验数据对比(工况1-2)

    Figure  3.  Predicted relative mass loss of the projectile compared with experimental data (Case 1-2)

    图  4  弹体相对质量损失预测结果与实验数据对比(工况2-1)

    Figure  4.  Predicted relative mass loss of the projectile compared with experimental data (Case 2-1)

    图  5  弹体相对质量损失预测结果与实验数据对比(工况2-2)

    Figure  5.  Predicted relative mass loss of the projectile compared with experimental data (Case 2-2)

    图  6  弹体相对质量损失预测结果与实验数据对比(工况3)

    Figure  6.  Predicted relative mass loss of the projectile compared with experimental data (Case 3)

    图  7  弹体相对质量损失预测结果与实验数据对比(工况4)

    Figure  7.  Predicted relative mass loss of the projectile compared with experimental data (Case 4)

    图  8  弹体相对质量损失预测结果与实验数据对比(工况5)

    Figure  8.  Predicted relative mass loss of the projectile compared with experimental data (Case 5)

    图  9  弹体相对质量损失预测结果与实验数据对比(工况6)

    Figure  9.  Predicted relative mass loss of the projectile compared with experimental data (Case 6)

    图  10  弹体相对质量损失预测结果与实验数据对比(工况7)

    Figure  10.  Predicted relative mass loss of the projectile compared with experimental data (Case 7)

    图  11  弹体相对质量损失预测结果与实验数据对比(工况8)

    Figure  11.  Predicted relative mass loss of the projectile compared with experimental data (Case 8)

    图  12  弹体相对质量损失预测结果与实验数据对比(工况9)

    Figure  12.  Predicted relative mass loss of the projectile compared with experimental data (Case 9)

    图  13  弹体相对质量损失预测结果与实验数据对比(工况10)

    Figure  13.  Predicted relative mass loss of the projectile compared with experimental data (Case 10)

    图  14  低速下弹体相对质量损失线性近似解与实验数据对比(工况1-1)

    Figure  14.  Experimental data and the linear approximate solution at low impact velocity (Case 1-1)

    图  15  低速下弹体相对质量损失线性近似解与实验数据对比(工况1-2)

    Figure  15.  Experimental data and the linear approximate solution at low impact velocity (Case 1-2)

    图  16  低速下弹体相对质量损失线性近似解与实验数据对比(工况2-1)

    Figure  16.  Experimental data and the linear approximate solution at low impact velocity (Case 2-1)

    图  17  低速下弹体相对质量损失线性近似解与实验数据对比(工况2-2)

    Figure  17.  Experimental data and the linear approximate solution at low impact velocity (Case 2-2)

    图  18  低速下弹体相对质量损失线性近似解与实验数据对比(工况3)

    Figure  18.  Experimental data and the linear approximate solution at low impact velocity (Case 3)

    图  19  低速下弹体相对质量损失线性近似解与实验数据对比(工况4)

    Figure  19.  Experimental data and the linear approximate solution at low impact velocity (Case 4)

    图  20  低速下弹体相对质量损失线性近似解与实验数据对比(工况5)

    Figure  20.  Experimental data and the linear approximate solution at low impact velocity (Case 5)

    图  21  低速下弹体相对质量损失线性近似解与实验数据对比(工况6)

    Figure  21.  Experimental data and the linear approximate solution at low impact velocity (Case 6)

    图  22  低速下弹体相对质量损失线性近似解与实验数据对比(工况7)

    Figure  22.  Experimental data and the linear approximate solution at low impact velocity (Case 7)

    图  23  低速下弹体相对质量损失线性近似解与实验数据对比(工况8)

    Figure  23.  Experimental data and the linear approximate solution at low impact velocity (Case 8)

    图  24  低速下弹体相对质量损失线性近似解与实验数据对比(工况9)

    Figure  24.  Experimental data and the linear approximate solution at low impact velocity (Case 9)

    图  25  低速下弹体相对质量损失线性近似解与实验数据对比(工况10)

    Figure  25.  Experimental data and the linear approximate solution at low impact velocity (Case 10)

    表  1  实验弹靶参数

    Table  1.   Parameters of targets and projectiles

    工况fc/MPaρt/(kg·m−3)骨料H弹体材料Yp/MPaρp/(kg·m−3)m0/kgd/mmL/dψ0
    1-113.52 000石英石74340 钢1 4817 8500.06412.96.883
    1-213.52 0000.06412.96.884.25
    2-121.62 0000.06412.96.883
    2-221.62 0000.06412.96.884.25
    362.82 3000.47820.3103
    451.02 3001.630.51010
    558.42 320石灰石34340 钢/AerMet1001 481/1 8207 8500.47820.3103
    658.42 3204340 钢/AerMet1001 481/1 8201.6230.53
    734.82 30060Si2 Mn/Tc41 300/1 0300.155144.25
    848.62 30060Si2 Mn/20#钢1 300/4500.155144.25
    961.32 30060Si2 Mn/45#钢1 300/6800.155144.25
    1076.42 30060Si2 Mn/35CrMnSi1 300/1 5400.155144.25
    下载: 导出CSV

    表  2  无量纲骨料修正因子η和β

    Table  2.   Dimensionless modified factors η and β

    fc/MPa骨料类型ηβfc/MPa骨料类型ηβfc/MPa骨料类型ηβ
    13.5石英石11.4462.8石英石10.7158.4石灰石0.430.38
    21.6石英石11.2334.8石灰石0.430.5761.3石灰石0.430.37
    51石英石10.8148.6石灰石0.430.4476.4石灰石0.430.31
    下载: 导出CSV

    表  3  工况1-2的模拟结果与实验对比

    Table  3.   Comparison of experimental and simulation results at case 1-2

    工况1-2弹速/(m·s−1)3455857229001 063
    He等[13]模型误差−33%−41%−35%−27%−13%
    本文模型误差−5%−15%−7%6%25%
    下载: 导出CSV

    表  4  工况10的模拟结果与实验对比

    Table  4.   Comparison of experimental and simulation results at case 10

    工况10弹速/(m·s−1)8479751 1241 1651 2501 3151 3761 382
    He等[13]模型误差46%23%21%102%88%49%98%57%
    本文模型误差5%−11%−12%45%35%7%42%13%
    下载: 导出CSV
  • [1] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [2] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [3] 孔祥振, 方秦, 吴昊, 等. 弹体高速侵彻混凝土靶质量损失和头形钝化的数值模拟研究 [J]. 固体力学学报, 2015, 36(S1): 65–73.

    KONG Xiangzhen, FANG qin, WU Hao, et al. Numerical study on mass loss and nose-blunting for the projectile during the high-speed penetration on concrete target [J]. Chinse Journal of Solid Mechanics, 2015, 36(S1): 65–73.
    [4] 刘志林, 王晓鸣, 李文彬, 等. 考虑侵蚀效应的卵形弹丸侵彻混凝土介质模型研究 [J]. 弹道学报, 2017, 29(2): 19–25. doi: 10.3969/j.issn.1004-499X.2017.02.004

    LIU Zhilin, WANG Xiaoming, LI Wenbin, et al. Model of ogive-nose projectile penetrating concrete target considering effect of mass loss and nose blunting [J]. Journal of Ballistics, 2017, 29(2): 19–25. doi: 10.3969/j.issn.1004-499X.2017.02.004
    [5] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土效应的实验研究 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE Xiang, XU Xiangyun, SUN Guijuan, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [6] 杨建超, 何翔, 金栋梁. 弹体高速侵彻混凝土质量侵蚀特性试验研究 [J]. 防护工程, 2010, 32(1): 6–10.

    YANG Jianchao, HE Xiang, JIN Dongliang. Experimental investigation into mass loss of projectiles that penetrate concrete targets at high velocity [J]. Protective Engineering, 2010, 32(1): 6–10.
    [7] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [8] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8−9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002.
    [9] SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [10] CHEN X W, HE L L, YANG S Q. Modeling on mass abrasion of kinetic energy penetrator [J]. European Journal of Mechanics A/Solids, 2010, 29(1): 7–17. DOI: 10.1016/j.euromechsol.2009.07.006.
    [11] 陈小伟, 杨世全, 何丽灵. 动能侵彻弹体的质量侵蚀模型分析 [J]. 力学学报, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017.

    CHEN Xiaowei, YANG Shiquan, HE Liling. Modeling on mass abrasion of kinetic energy penetrator [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 739–747. DOI: 10.3321/j.issn:0459-1879.2009.05.017.
    [12] JONES S E, FOSTER J C, TONESS O A, et al. An estimate for mass loss from high velocity steel penetrators [C] // Pressure Vessels and Piping Conference. New York: ASME, 2002: 227−237. DOI: 10.1115/PVP2002-1149.
    [13] HE L L, CHEN X W, HE X. Parametric study on mass loss of penetrators [J]. Acta Mechanica Sinica, 2010, 26(4): 585–597. DOI: 10.1007/s10409-010-0341-8.
    [14] CHEN X W. Dynamics of metallic and reinforced concrete targets subjected to projectile impact [D]. Singapore: Nanyang Technological University, 2003: 1−62.
    [15] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [16] HILL R. Elastic properties of reinforced solids: Some theoretical principles [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 357–372. DOI: 10.1016/0022-5096(63)90036-X.
    [17] WU H, CHEN X W, HE L L, et al. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target, Part I: engineering model for the mass loss and nose-blunting of ogive-nosed projectiles [J]. Acta Mechanica Sinica, 2014, 30(6): 933–942. DOI: 10.1007/s10409-014-0090-1.
  • 加载中
图(25) / 表(4)
计量
  • 文章访问数:  5816
  • HTML全文浏览量:  1934
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-07
  • 修回日期:  2018-05-04
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回