温度和浓度对甲醇喷雾爆炸特性参数的影响

吕启申 臧小为 潘旭海 马鹏 虞浩 蒋军成

吕启申, 臧小为, 潘旭海, 马鹏, 虞浩, 蒋军成. 温度和浓度对甲醇喷雾爆炸特性参数的影响[J]. 爆炸与冲击, 2019, 39(9): 095402. doi: 10.11883/bzycj-2018-0121
引用本文: 吕启申, 臧小为, 潘旭海, 马鹏, 虞浩, 蒋军成. 温度和浓度对甲醇喷雾爆炸特性参数的影响[J]. 爆炸与冲击, 2019, 39(9): 095402. doi: 10.11883/bzycj-2018-0121
LYU Qishen, ZANG Xiaowei, PAN Xuhai, MA Peng, YU Hao, JIANG Juncheng. Effects of temperature and concentration on characteristic parameters of methanol explosion[J]. Explosion And Shock Waves, 2019, 39(9): 095402. doi: 10.11883/bzycj-2018-0121
Citation: LYU Qishen, ZANG Xiaowei, PAN Xuhai, MA Peng, YU Hao, JIANG Juncheng. Effects of temperature and concentration on characteristic parameters of methanol explosion[J]. Explosion And Shock Waves, 2019, 39(9): 095402. doi: 10.11883/bzycj-2018-0121

温度和浓度对甲醇喷雾爆炸特性参数的影响

doi: 10.11883/bzycj-2018-0121
基金项目: 国家重点研发计划(2017YFC0804700,2016YFC0800100)
详细信息
    作者简介:

    吕启申(1993- ),男,硕士研究生,anquanlqs@163.com

    通讯作者:

    潘旭海(1977- ),男,博士,教授,xuhaipan@njtech.edu.cn

  • 中图分类号: O383; X932

Effects of temperature and concentration on characteristic parameters of methanol explosion

  • 摘要: 采用20 L球形喷雾爆炸实验系统,探究甲醇在不同环境温度、物料温度及喷雾浓度下的爆炸特性规律。结果表明:20 L爆炸球内甲醇喷雾液滴爆炸极限范围为118.8~594.0 g/cm3,与纯气相爆炸极限范围(78.6~628.6 g/cm3)相比,甲醇喷雾液滴爆炸极限范围较窄,喷雾液滴的爆炸敏感性比纯气相甲醇蒸汽低。随着爆炸球内环境温度的升高,甲醇喷雾爆炸极限范围变宽,受限空间内甲醇气液喷雾点火成功概率增大。当甲醇物料自身温度或爆炸容器内环境温度保持不变时,相应爆炸特性参数在Φ=1.8拐点处均呈现先增大后减小的趋势。当Φ=1.8时,甲醇喷雾爆炸存在最大超压峰值。环境温度、物料温度的升高可以提高雾化质量,促进扩散燃烧。但是环境温度的变化较之物料温度的改变对于甲醇液滴喷雾爆炸特性参数的影响更为显著。环境温度和化学当量比二元变量共同影响着甲醇喷雾爆炸强度值,当Φ=1.8,环境温度为303.15 K时,甲醇的喷雾爆炸强度大于甲烷气体爆炸的爆炸强度。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  物料温控系统原理示意图

    Figure  2.  Schematic diagram of material temperature control system

    图  3  环境温度及物料温度对甲醇爆炸特性的影响

    Figure  3.  Effects of ambient temperature and material temperature on explosion characteristics of methanol explosion

    图  4  环境温度、甲醇化学当量比对爆炸特性的影响

    Figure  4.  Effects of ambient temperature and equivalence ratio on explosion characteristics of methanol explosion

    图  5  甲醇物料温度、化学当量比对爆炸特性的影响

    Figure  5.  Effects of material temperature and Chemical equivalence ratio on explosion characteristics of methanol explosion

    表  1  甲醇气-液两相浓度随爆炸球内环境温度变化关系

    Table  1.   Relation between the methanol concentrations in vapor/liquid phaseand the ambient temperature in 20 L spherical vessel

    甲醇喷雾化学当量比环境温度/K总浓度/(g·cm−3)气相质量浓度/(g·cm−3)液相质量浓度/(g·cm−3)
    0.2298.15 39.60.217 39.382
    0.2303.15 39.60.276 39.323
    0.2308.15 39.60.348 39.251
    0.2313.15 39.60.435 39.165
    0.2318.15 39.60.538 39.061
    0.6298.15118.80.217118.583
    0.6303.15118.80.276118.524
    0.6308.15118.80.348118.452
    0.6313.15118.80.435118.365
    0.6318.15118.80.538118.262
    1.0298.15198.00.217197.783
    1.0303.15198.00.276197.724
    1.0308.15198.00.348197.652
    1.0313.15198.00.435197.565
    1.0318.15198.00.538197.462
    1.4298.15277.20.217276.983
    1.4303.15277.20.276276.924
    1.4308.15277.20.348276.852
    1.4313.15277.20.435276.765
    1.4318.15277.20.538276.662
    1.8298.15356.40.217356.183
    1.8303.15356.40.276356.124
    1.8308.15356.40.348356.052
    1.8313.15356.40.435355.965
    1.8318.15356.40.538355.862
    2.2298.15435.60.217435.383
    2.2303.15435.60.276435.324
    2.2308.15435.60.348435.252
    下载: 导出CSV
    续表 1
    甲醇喷雾化学当量比环境温度/K总浓度/(g·cm−3)气相质量浓度/(g·cm−3)液相质量浓度/(g·cm−3)
    2.2313.15435.60.435435.165
    2.2318.15435.60.538435.062
    2.6298.15514.80.217514.583
    2.6303.15514.80.276514.524
    2.6308.15514.80.348514.452
    2.6313.15514.80.435514.365
    2.6318.15514.80.538514.262
    3.0298.15594.00.217593.783
    3.0303.15594.00.276593.724
    3.0308.15594.00.348593.652
    3.0313.15594.00.435593.565
    3.0318.15594.00.538593.462
    下载: 导出CSV

    表  2  爆炸容器内环境温度对甲醇爆炸极限的影响

    Table  2.   Effect of ambient temperature on explosion limit of methanol explosion

    甲醇喷雾化学当量比质量浓度/(g·cm−3环境温度/K是否点火成功超压峰值/MPa超压上升速率峰值/(MPa·s−1
    0.2 39.6298.15
    0.2 39.6303.15
    0.2 39.6308.15
    0.2 39.6313.15
    0.2 39.6318.15
    0.6118.8298.15
    0.6118.8303.15
    0.6118.8308.150.627 38.146
    0.6118.8313.150.637 39.613
    0.6118.8318.150.662 63.087
    3.0594.0298.15
    3.0594.0303.15
    3.0594.0308.15
    3.0594.0313.150.764105.643
    3.0594.0318.150.794146.714
    下载: 导出CSV

    表  3  环境温度对爆炸指数的影响

    Table  3.   Effects of ambient temperature on explosion index of methanol explosion

    环境温度/K甲醇喷雾化学当量比爆炸指数/(MPa·m·s−1)环境温度/K甲醇喷雾化学当量比爆炸指数/(MPa·m·s−1)
    308.150.611.549303.151.864.913
    313.150.612.744308.151.872.878
    318.150.614.337313.151.880.047
    298.151.011.547318.151.899.560
    303.151.014.337298.152.239.824
    308.151.020.310303.152.249.983
    313.151.037.036308.152.259.736
    318.151.048.586313.152.270.887
    298.151.428.275318.152.282.834
    303.151.439.426298.152.637.035
    308.151.451.772303.152.646.992
    313.151.464.515308.152.648.984
    318.151.470.489313.152.668.099
    298.151.844.603318.152.680.047
    下载: 导出CSV
  • [1] BEECKMANN J, CAI L, PITSCH H. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure [J]. Fuel, 2014, 117: 340–350. DOI: 10.1016/j.fuel.2013.09.025.
    [2] ZHANG X, WANG G, ZOU J, et al. Investigation on the oxidation chemistry of methanol in laminar premixed flames [J]. Combustion and Flame, 2017, 180: 20–31. DOI: 10.1016/j.combustflame.2017.02.016.
    [3] SAEED K. Determination of the explosion characteristics of methanol-Air mixture in a constant volume vessel [J]. Fuel, 2017, 210: 729–737. DOI: 10.1016/j.fuel.2017.09.004.
    [4] MITU M, BRANDES E. Explosion parameters of methanol-air mixtures [J]. Fuel, 2015, 158: 217–223. DOI: 10.1016/j.fuel.2015.05.024.
    [5] GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 775–779. DOI: 10.1016/j.jlp.2016.08.013.
    [6] 孙彦龙, 谭迎新, 谢溢月, 等. 甲醇汽油混合物爆炸下限测试研究 [J]. 中国安全科学学报, 2015, 25(12): 56–61. DOI: 10.16265/j.cnki.issn1003-3033.2015.12.010.

    SUN Yanlong, TAN Yingxin, XIE Yiyue, et al. Study on lower explosive limits of methanol-gasoline blends [J]. China Safety Science Journal, 2015, 25(12): 56–61. DOI: 10.16265/j.cnki.issn1003-3033.2015.12.010.
    [7] 刘金彪, 谭迎新, 于金升, 等. 氮气与二氧化碳对甲醇爆炸极限的影响 [J]. 测试技术学报, 2017, 31(6): 546–550.

    LIU Jinbiao, TAN Yingxin, YU Jinsheng, et al. Influence of nitrogen and carbon dioxide on methanol explosion limit [J]. Journal of Test and Measurement Technology, 2017, 31(6): 546–550.
    [8] 陈长坤, 王玮玉, 刘晅亚. 隧道内甲醇液体蒸发及蒸气扩散规律数值模拟分析 [J]. 中国安全生产科学技术, 2017, 13(12): 52–57.

    CHEN Changkun, WANG Weiyu, LIU Xuanya. Numerical simulation analysis on evaporation of methanol liquid and diffusion laws of methanol vapor in tunnel [J]. Journal of Safety Science and Technology, 2017, 13(12): 52–57.
    [9] 姚春德, 陈志方, 吴涛阳, 等. 甲醇温度和压力对喷雾特性的影响试验 [J]. 农业机械学报, 2015, 46(11): 377–382. DOI: 10.6041/j.issn.1000-1298.2015.11.051.

    YAO Chunde, CHEN Zhifang, WU Taoyang, et al. Experiment on effects of methanol temperature and pressure on spray [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 377–382. DOI: 10.6041/j.issn.1000-1298.2015.11.051.
    [10] 姚春德, 陈志方, 银增辉, 等. 燃油温度和环境温度对甲醇低压喷雾的影响 [J]. 内燃机学报, 2015, 33(4): 310–315. DOI: 10.16236/j.cnki.nrjxb.201504044.

    YAO Chunde, CHEN Zhifang, YIN Zenghui, et al. Effect of fuel and environmental temperature on the low pressure methanol spray [J]. Transactions of CSICE, 2015, 33(4): 310–315. DOI: 10.16236/j.cnki.nrjxb.201504044.
    [11] 王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502. DOI: 10.11883/1001-1455(2016)04-0497-06.

    WANG Yue, BAI Chunhua. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502. DOI: 10.11883/1001-1455(2016)04-0497-06.
    [12] 王悦. 可燃液体燃料云雾形成和爆炸问题研究 [D]. 北京: 北京理工大学, 2016: 44−45.
    [13] 张英华, 黄志安, 高玉坤. 燃烧与爆炸学 [M]. 第2版. 北京: 冶金工业出版社, 2015: 223−224.
    [14] 蒋军成. 化工安全 [M]. 北京: 机械工业出版社, 2008: 60−65.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  5403
  • HTML全文浏览量:  1590
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-08-12
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回