力学环境约束下剪切销可靠性分析及优化设计

王若冰 赵志军 肖和业 陈家文 蒋晓磊

王若冰, 赵志军, 肖和业, 陈家文, 蒋晓磊. 力学环境约束下剪切销可靠性分析及优化设计[J]. 爆炸与冲击, 2019, 39(7): 075101. doi: 10.11883/bzycj-2018-0146
引用本文: 王若冰, 赵志军, 肖和业, 陈家文, 蒋晓磊. 力学环境约束下剪切销可靠性分析及优化设计[J]. 爆炸与冲击, 2019, 39(7): 075101. doi: 10.11883/bzycj-2018-0146
WANG Ruobing, ZHAO Zhijun, XIAO Heye, CHEN Jiawen, JIANG Xiaolei. Reliability analysis and design optimization of a shear pin constrained by mechanical boundaries[J]. Explosion And Shock Waves, 2019, 39(7): 075101. doi: 10.11883/bzycj-2018-0146
Citation: WANG Ruobing, ZHAO Zhijun, XIAO Heye, CHEN Jiawen, JIANG Xiaolei. Reliability analysis and design optimization of a shear pin constrained by mechanical boundaries[J]. Explosion And Shock Waves, 2019, 39(7): 075101. doi: 10.11883/bzycj-2018-0146

力学环境约束下剪切销可靠性分析及优化设计

doi: 10.11883/bzycj-2018-0146
详细信息
    作者简介:

    王若冰(1986- ),男,博士,高级工程师,robbin203@163.com

  • 中图分类号: O347; TJ45; TB114.3

Reliability analysis and design optimization of a shear pin constrained by mechanical boundaries

  • 摘要: 剪切销是火工装置关键部件,其可靠性不仅表现为点火作用下可靠剪断,还表现为受力学环境激励不发生断裂。本文中以多项式混沌展开方法为基础,建立了力学环境约束下的剪切销分析模型,结合序贯优化与可靠性分析方法,提出了剪切销可靠性优化设计的思路。以某型火工作动装置为应用实例,依据实用的力学环境,进行了剪切销可靠性分析及优化设计,揭示了设计参数与力学环境之间的关系,并获得了影响可靠性的关键参数。最后,开展了优化后的火工作动装置实验测试,结果佐证了优化设计的有效性。
  • 图  1  SORA-PMA方法流程示意图

    Figure  1.  Flowchart of the SORA-PMA method

    图  2  火工作动装置内部结构图

    Figure  2.  Internal structure of the explosive actuated device

    图  3  容差、目标函数和归一化约束函数值的迭代收敛过程

    Figure  3.  Convergence history of tolerance, objective function and normalized constraints

    图  4  火工作动装置工作后的照片

    Figure  4.  A photo of an explosive-actuated device after work

    表  1  火工作动装置工作环境

    Table  1.   Work situation of the pyrotechnic pin

    序号工作状态过载类型加速度作用时间/ms要求
    1点火工作静压力剪切销可靠剪断
    2起落冲击后峰锯齿波20g11剪切销可靠锁止
    3发射冲击半正弦波3 000g2剪切销可靠锁止
    4载机加速恒加速度10g剪切销可靠锁止
    5挂载飞行随机振动参见国家军用标准GJB 150.16A—2009附件中
    表C.4[22]42和图C.10[22]53中直升机挂飞振动条件
    剪切销可靠锁止
    下载: 导出CSV

    表  2  影响火工作动装置可靠性的因素

    Table  2.   Influence factors on the pyrotechnic pin reliability

    序号参数符号参数名称参数均值参数标准差
    1ppow火药工作产生压强10 MPa2.5 MPa
    2S1火药压力作用面积500 mm25 mm2
    3d剪切销截面直径2.5 mm0.1 mm
    4E7075铝合金弹性模量70 GPa0.005 GPa
    5σb7075铝合金极限强度429 MPa5 MPa
    6σfatigue7075铝合金真实断裂强度627 MPa5 MPa
    7εfatigue7075铝合金真实断裂延性0.290.000 5
    8μ泊松比0.330.000 5
    9l剪切面长度3.5 mm0.1 mm
    10ξ损耗因子0.0050.001
    11mcylinderpin圆柱销质量15 g0.1 g
    12acylinderpin圆柱销加速度200 m/s210 m/s2
    13tvib振动时长10 h1 h
    14σmean平均预紧力400 MPa5 MPa
    15aimpact起落冲击(发射冲击)加速度幅值200(30 000) m/s2100 m/s2
    16timpact起落冲击(发射冲击)时长11(3) ms1 ms
    下载: 导出CSV

    表  3  变量对不同工作环境的不确定性灵敏度

    Table  3.   Uncertainty sensitivity of variables in different mechanic environments

    参数点火工作产品发射载机加速载机起落挂载飞行综合影响系数
    τ1σ1σ2τ2τ3σ3σ4τ4σ5
    ppow0.2600.0000.0000.0000.0000.0000.0000.0000.0000.029
    S10.3020.0000.0000.0000.0000.0000.0000.0000.0000.034
    d0.2890.2260.1990.1780.3780.2330.2360.2580.2540.250
    E0.0000.1060.0920.1280.0000.1100.0640.0720.0630.070
    σb0.0000.0000.0000.0000.0000.0000.0000.0000.0620.007
    σfatigue0.0000.0000.0000.0000.0000.0000.0000.0000.0460.005
    εfatigue0.0000.0000.0000.0000.0000.0000.0000.0000.0570.006
    μ0.0000.0000.0000.1070.0000.0000.0000.0710.0000.020
    l0.0000.0000.1260.0990.0000.0000.1350.0430.0000.045
    ξ0.0000.0190.0120.0100.0000.0160.0190.0170.0340.014
    mcylinderpin0.0000.1120.1150.0900.2020.1210.0650.0650.0600.092
    acylinderpin0.0000.0000.0000.0000.2030.0000.0000.0000.0000.023
    tvib0.0000.0000.0000.0000.0000.0000.0000.0000.1210.014
    σmean0.0000.0000.0000.0000.0000.0000.0000.0000.1360.015
    aimpact0.0000.1730.1560.1300.0000.1580.1730.1590.0000.106
    timpact0.0000.1970.1570.1330.0000.1780.1520.1410.0000.107
     注:τ1τ2τ3τ4为剪切应力,σ1σ3为弯曲应力,σ2σ4为拉伸应力,σ5为疲劳破坏应力。
    下载: 导出CSV

    表  4  设计变量初值、取值范围和优化值

    Table  4.   Initial values, ranges and optimal values of design variables

    设计变量单位初值优化值取值范围
    ppowMPa10.0013.51[8, 15]
    dmm2.501.49[1, 2]
    lmm3.502.62[1, 3]
    σmeanMPa400300[300, 400]
    下载: 导出CSV
  • [1] 荣吉利, 宋乾强, 张涛. 一种预测航天火工装置可靠性的小样本方法 [J]. 宇航学报, 2015, 36(3): 360–364. DOI: 10.3873/j.issn.1000-1328.2015.03.016.

    RONG Jili, SONG Qianqiang, ZHANG Tao. A small sample method for predicting reliability of space pyrotechnic devices [J]. Journal of Astronautics, 2015, 36(3): 360–364. DOI: 10.3873/j.issn.1000-1328.2015.03.016.
    [2] 荣吉利, 宋乾强, 张涛, 等. 冗余航天火工装置可靠性评估方法及应用 [J]. 宇航学报, 2013, 34(7): 1021–1026. DOI: 10.3873/j.issn.1000-1328.2013.07.019.

    RONG Jili, SONG Qianqiang, ZHANG Tao. Reliability assessment method for redundant aerospace pyrotechnic devices and its application [J]. Journal of Astronautics, 2013, 34(7): 1021–1026. DOI: 10.3873/j.issn.1000-1328.2013.07.019.
    [3] 董海平, 蔡瑞娇, 穆慧娜. 火工品可靠性计量计数评估方法的有效性研究 [J]. 含能材料, 2008, 16(5): 553–555. DOI: 10.3969/j.issn.1006-9941.2008.05.020.

    DONG Haiping, CAI Ruijiao, MU Huina. Validity of variables attributes assessment method for reliability of initiating explosive devices [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 553–555. DOI: 10.3969/j.issn.1006-9941.2008.05.020.
    [4] 董海平, 赵霞, 蔡瑞娇. 基于信息等值的火工品可靠性评估小样本方法 [J]. 兵工学报, 2011, 32(5): 554–558.

    DONG Haiping, ZHAO Xia, CAI Ruijiao. An assessment method of reliability of initiating devices based on information measure equivalency [J]. Acta Armamentarii, 2011, 32(5): 554–558.
    [5] 董海平, 蔡瑞娇, 穆慧娜, 等. 火工品可靠性的感度参数设计法 [J]. 爆炸与冲击, 2009, 29(6): 613–616. DOI: 10.11883/1001-1455(2009)06-0613-04 .

    DONG Haiping, CAI Ruijiao, MU Huina, et al. A sensitivity parameter design method for reliability of explosive initiators [J]. Explosion and Shock Waves, 2009, 29(6): 613–616. DOI: 10.11883/1001-1455(2009)06-0613-04 .
    [6] 伊枭剑, 董海平, 翟志强, 等. 基于应力-强度干涉模型的火工品可靠性设计方法 [J]. 北京理工大学学报, 2014, 34(10): 1007–1011.

    YI Xiaojian, DONG Haiping, ZHAI Zhiqiang, et al. Reliability design for initiating devices based on stress-strength interference model [J]. Transactions of Beijing Institute of Technology, 2014, 34(10): 1007–1011.
    [7] OUCH R, UKRITCHON B, PIPATPONGSA T, et al. Finite element analyses of the stability of a soil block reinforced by shear pins [J]. Geomechanics and Engineering, 2017, 12(6): 1021–1046.
    [8] 孙洁, 郭崇星, 吴瑞德, 等. 拔销器作用过程的仿真研究 [J]. 火工品, 2017(1): 10–13. doi: 10.3969/j.issn.1003-1480.2017.01.004

    SUN Jie, GUO Chongxing, WU Ruide, et al. Simulation research on the function process of the pin puller [J]. Initiators and Pyrotechnics, 2017(1): 10–13. doi: 10.3969/j.issn.1003-1480.2017.01.004
    [9] 高滨. 火工作动装置设计参数的敏感性分析 [J]. 航天返回与遥感, 2006, 27(3): 57–60. doi: 10.3969/j.issn.1009-8518.2006.03.011

    GAO Bin. Design parameter sensitivity analysis of pyrotechnically actuated devices [J]. Space Craft Recovery and Remote Sensing, 2006, 27(3): 57–60. doi: 10.3969/j.issn.1009-8518.2006.03.011
    [10] COLANTUONO T, GROSSONI I, ALLEN P, et al. The optimal strength of shear pins: requirements in point run-throughs [J]. Journal of Rail and Rapid Transit, 2016, 232(2): 2–19. DOI: 10.1177/0954409716682657.
    [11] SALTELLI A, RATTO M, ANDRES T, et al. Global sensitivity analysis: the primer [M]. Chichester: John Wiley and Sons, 2008.
    [12] HELTON J C, JOHNSON J D, SALLABERRY C J, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis [J]. Reliability Engineering and System Safety, 2006, 91(10/11): 1175–1209.
    [13] IMAN R L, HELTON J C. An investigation of uncertainty and sensitivity analysis techniques for computer models [J]. Risk Analysis, 2010, 8(1): 71–90.
    [14] WIENER N. The homogeneous chaos [J]. American Journal of Mathematics, 1938, 60(4): 897–936. doi: 10.2307/2371268
    [15] DU Xiaoping, GUO Jia, BEERAM H. Sequential optimization and reliability assessment for multidisciplinary systems design [J]. Structural and Multidisciplinary Optimization, 2008, 35(2): 117–130. DOI: 10.1007/s00158-007-0121-7.
    [16] 崔卫东, 关云翔, 惠蕾. 拔销器的小型化设计 [J]. 火工品, 2006(2): 17–19. doi: 10.3969/j.issn.1003-1480.2006.02.005

    CUI Weidong, GUAN Yunxiang, HUI Lei. Design of the small-sized piston actuator [J]. Initiators and Pyrotechnics, 2006(2): 17–19. doi: 10.3969/j.issn.1003-1480.2006.02.005
    [17] 汪凤泉. 电子设备振动与冲击手册 [M]. 北京: 科学出版社, 1998.
    [18] 苟文选. 材料力学 [M]. 北京: 科学出版社, 2005.
    [19] 徐鹏. 金属材料应变寿命曲线估算的新方法[D]. 南京: 南京航空航天大学, 2012.

    XU Peng. A new method for the estimation of strain-life curve of metals [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
    [20] 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用 [M]. 北京: 科学出版社, 2013.
    [21] 王若冰, 谷良贤, 龚春林. 随机-区间混合不确定性分层序列化多学科可靠性分析方法 [J]. 西北工业大学学报, 2016(1): 139–146. DOI: 10.3969/j.issn.1000-2758.2016.01.021.

    WANG Ruobing, GU Liangxian, GONG Chunlin. A stratified sequencing multi-disciplinary reliability analysis method under random and interval uncertainty [J]. Journal of Northwestern Polytechnical University, 2016(1): 139–146. DOI: 10.3969/j.issn.1000-2758.2016.01.021.
    [22] 施荣明、朱广荣、吴飒, 等. 军用装备实验室环境试验方法: 第16部分: 振动试验: GJB 150. 16A-2009 [S]. 北京: 总装备部军标出版发行部, 2009: 42; 53.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  5409
  • HTML全文浏览量:  2153
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-08-09
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回