CO2-超细水雾对CH4/Air初期爆炸特性的影响

裴蓓 韦双明 陈立伟 潘荣锟 王燕 余明高 李杰

裴蓓, 韦双明, 陈立伟, 潘荣锟, 王燕, 余明高, 李杰. CO2-超细水雾对CH4/Air初期爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147
引用本文: 裴蓓, 韦双明, 陈立伟, 潘荣锟, 王燕, 余明高, 李杰. CO2-超细水雾对CH4/Air初期爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147
PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147
Citation: PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147

CO2-超细水雾对CH4/Air初期爆炸特性的影响

doi: 10.11883/bzycj-2018-0147
基金项目: 

国家自然科学基金 51604095

国家自然科学基金 51774059

国家自然科学基金 51774115

中国博士后科学基金 2018M630818

河南省科技攻关研究 172102310570

河南理工大学创新型科研团队 T2018-2

详细信息
    作者简介:

    裴蓓(1982-), 女, 博士, 讲师, smart128@126.com

    通讯作者:

    余明高(1963-), 男, 博士, 教授, mg_yu@126.com

  • 中图分类号: O382;TD75.2

Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air

  • 摘要: 为了研究CO2和超细水雾对9.5%甲烷/空气初期爆炸特性的影响,采用高速纹影系统和定容燃烧弹对9.5%甲烷/空气初期爆炸特性进行了研究。分别改变CO2稀释体积分数和超细水雾质量浓度,分析在二者单独和共同作用下球形火焰传播过程、火焰传播速度和爆炸超压的变化规律。结果表明:58.3 g/m3超细水雾增强了火焰不稳定性,促进了火焰加速和爆炸超压增加,表明超细水雾不足能产生促爆作用,只有当超细水雾充足时才会抑制甲烷爆炸;CO2和超细水雾共同作用时能避免因超细水雾带来的促爆现象,可以明显减弱火焰不稳定性,减小火焰传播速度,降低爆炸超压和平均压升速率,以及明显推迟超压峰值来临时间。
  • 图  1  实验系统图

    Figure  1.  Schematic of experimental system

    图  2  9.5%甲烷/空气球形火焰的传播过程

    Figure  2.  9.5% methane/air spherical flame propagation process

    图  3  CO2对9.5%甲烷/空气球形火焰传播过程的影响

    Figure  3.  Effect of CO2 on propagation of 9.5% methane/air spherical flame

    图  4  超细水雾对9.5%甲烷/空气球形火焰传播过程的影响

    Figure  4.  Effect of ultrafine water mist on propagation of 9.5% methane/air spherical flame

    图  5  CO2-超细水雾对9.5%甲烷/空气球形火焰传播过程的影响

    Figure  5.  Effect of CO2 and ultrafine water mist on propagation of 9.5% methane/air spherical flame

    图  6  CO2-超细水雾对9.5%甲烷/空气火焰传播速度的影响

    Figure  6.  Effect of CO2-ultrafine water mist on flame propagation speed of 9.5% methane/air

    图  7  CO2和超细水雾对9.5%甲烷/空气爆炸超压的影响

    Figure  7.  Influences of CO2 and ultrafine water mist on explosion overpressure of 9.5% methane/air

    图  8  CO2-超细水雾对9.5%甲烷/空气的抑爆效果

    Figure  8.  Effect of CO2-ultrafine water mist on explosion suppression of 9.5% methane/air

  • [1] 郑立刚, 苏洋, 李刚, 等.点火位置对氢气/甲烷/空气预混气体爆燃特性的影响[J].化工学报, 2017, 68(12):4874-4881. DOI: 10.11949/j.issn.0438-1157.20170369.

    ZHENG Ligang, SU Yang, LI Gang, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air[J]. CIESC Journal, 2017, 68(12):4874-4881. DOI: 10.11949/j.issn.0438-1157.20170369.
    [2] SCHWER D A, KAILASANATH K. Numerical simulations of the mitigation of unconfined explosions using water-mist[J]. Proceedings of the Combustion Institute, 2007, 31(2):2361-2369. DOI: 10.1016/j.proci.2006.07.145.
    [3] ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast[J]. Fire Technology, 2012, 48(3):641-675. DOI: 10.1007/s10694-010-0156-y.
    [4] HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of lean hydrogen deflagrations in a vented cylindrical rig with water fog[J]. International Journal of Hydrogen Energy, 2012, 37(20):15406-15422. DOI: 10.1016/j.ijhydene.2012.07.131.
    [5] LENTATI A M, CHELLIAH H K. Physical, thermal, and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames[J]. Symposium on Combustion, 1998, 27(2):2839-2846. DOI: 10.1016/S0082-0784(98)80142-2.
    [6] YOSHIDA A, OKAWA T, EBINA W, et al. Experimental and numerical investigation of flame speed retardation by water mist[J]. Combustion and Flame, 2015, 162(5):1772-1777. DOI: 10.1016/j.combustflame.2014.11.038.
    [7] CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:352-360. DOI: 10.1016/j.jlp.2016.06.012.
    [8] GU R, WANG X S, XU H L. Experimental study on suppression of methane explosion with ultra-fine water mist[J]. Fire Safety Science, 2010, 19(2):51-59. DOI: 10.3969/j.issn.1004-5309.2010.02.001.
    [9] HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of hydrogen deflagrations in a vented cylindrical rig with water fog and nitrogen dilution[J]. International Journal of Hydrogen Energy, 2013, 38(8):3741-3487. DOI: 10.1016/j.ijhydene.2012.12.134.
    [10] MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames[J]. Combustion and Flame, 2006, 144(1):103-111. DOI: 10.1016/j.combustflame.2005.07.003.
    [11] BOECK L R, KINK A, OEZDIN D, et al. Influence of water mist on flame acceleration, DDT and detonation in H2-air mixtures[J]. International Journal of Hydrogen Energy, 2015, 40(21):6995-7004. DOI: 10.1016/j.ijhydene.2015.03.129.
    [12] BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist:Part 2. Mitigation of vented deflagrations[J]. International Journal of Hydrogen Energy, 2012, 37(24):19258-19267. DOI: 10.1016/j.ijhydene.2012.10.029.
    [13] INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist:Part 1. Burning velocity[J]. International Journal of Hydrogen Energy, 2012, 37(24):19250-19257. DOI: 10.1016/j.ijhydene.2012.09.092.
    [14] VOLLMER K G, ETTNER F, SATTELMAYER T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient[J]. Combustion Science and Technology, 2012, 184(10/11):1903-1915. DOI: 10.1080/00102202.2012.690652.
    [15] GIERAS M. Flame acceleration due to water droplets action[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(4):472-477. DOI: 10.1016/j.jlp.2008.03.004.
    [16] 余明高, 安安, 游浩.细水雾抑制管道瓦斯爆炸的实验研究[J].煤炭学报, 2011, 36(3):417-422. DOI: 10.13225/j.cnki.jccs.2011.03.025.

    YU Minggao, AN An, YOU Hao. Experimental study on inhibiting the gas explosion by water spray in tube[J]. Journal of China Coal Society, 2011, 36(3):417-422. DOI: 10.13225/j.cnki.jccs.2011.03.025.
    [17] 曹兴岩, 任婧杰, 周一卉, 等.超细水雾增强与抑制甲烷/空气爆炸的机理分析[J].煤炭学报, 2016, 41(7):1711-1719. DOI: 10.13225/j.cnki.jccs.2015.1726.

    CAO Xingyan, REN Jingjie, ZHOU Yihui, et al. Analysis on the enhancement and suppression of methane/air explosions by ultrafine water mist[J]. Journal of China Coal Society, 2016, 41(7):1711-1719. DOI: 10.13225/j.cnki.jccs.2015.1726.
    [18] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285:311-318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [19] PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct[J]. Journal of Loss Prevention in the Process Industries, 2016, 40:546-553. DOI: 10.1016/j.jlp.2016.02.005.
    [20] CHELLIAH H K, LAZZARINI A K, WANIGARATHNE P C, et al. Inhibition of premixed and non-premixed flames with fine droplets of water and solutions[J]. Proceedings of the Combustion Institute, 2002, 29(1):369-376. DOI: 10.1016/S1540-7489(02)80049-9.
    [21] 暴秀超, 刘福水, 孙作宇.预混火焰胞状不稳定性研究[J].西华大学学报:自然科学版, 2014, 33(1):79-83. DOI: 10.3969/j.issn.1673-159X.2014.01.019.

    BAO Xiuchao, LIU Fushui, SUN Zuoyu. Study on instability of outwardly propagating spherical premixed flame[J]. Journal of Xihua University:Natural Science Edition, 2014, 33(1):79-83. DOI: 10.3969/j.issn.1673-159X.2014.01.019.
    [22] 张鹏鹏.超细水雾增强与抑制瓦斯爆炸的实验研究[D].大连: 大连理工大学, 2013: 35-37. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013201707.htm
    [23] 暴秀超, 刘福水, 张正芳.不同初始压力下氢气燃烧的胞状不稳定性及自加速性[J].燃烧科学与技术, 2014, 20(1):38-43. DOI: 10.11715/rskxjs.R201307020.

    BAO Xiuchao, LIU Fushui, ZHANG Zhengfang. Cellular instability and self-acceleration of hydrogen combustionat various initial pressure[J]. Journal of Combustion Science and Technology, 2014, 20(1):38-43. DOI: 10.11715/rskxjs.R201307020.
  • 加载中
图(8)
计量
  • 文章访问数:  5861
  • HTML全文浏览量:  2092
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-05-22
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回