ZrCuNiAlAg块体非晶合金JH-2模型研究

石永相 施冬梅 李文钊 余志统 尚春明

石永相, 施冬梅, 李文钊, 余志统, 尚春明. ZrCuNiAlAg块体非晶合金JH-2模型研究[J]. 爆炸与冲击, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
引用本文: 石永相, 施冬梅, 李文钊, 余志统, 尚春明. ZrCuNiAlAg块体非晶合金JH-2模型研究[J]. 爆炸与冲击, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
SHI Yongxiang, SHI Dongmei, LI Wenzhao, YU Zhitong, SHANG Chunming. Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy[J]. Explosion And Shock Waves, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
Citation: SHI Yongxiang, SHI Dongmei, LI Wenzhao, YU Zhitong, SHANG Chunming. Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy[J]. Explosion And Shock Waves, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221

ZrCuNiAlAg块体非晶合金JH-2模型研究

doi: 10.11883/bzycj-2018-0221
详细信息
    作者简介:

    石永相(1992- ),男,硕士,助理工程师,2536973141@qq.com

    通讯作者:

    施冬梅(1967- ),女,博士,副教授,13383013059@163.com

  • 中图分类号: O345

Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy

  • 摘要: 为了更好的进行ZrCuNiAlAg块体非晶合金药型罩的爆炸成形及侵彻仿真研究,首要就是建立其材料模型。本文结合ZrCuNiAlAg块体非晶合金力学性能试验结果计算得到了材料的JH-2模型参数,研究确定了ZrCuNiAlAg块体非晶合金JH-2模型。为了验证ZrCuNiAlAg块体非晶合金JH-2模型的准确性,采用Autodyn建立了平板撞击试验有限元模型,模拟了ZrCuNiAlAg块体非晶合金材料在高压、高应变率等环境条件下的变形过程,仿真计算得到的靶板背面自由面粒子速度与试验结果相比,速度平均偏差均在3%以内,表明ZrCuNiAlAg块体非晶合金JH-2模型能很好的描述该材料在大变形、高应变率、高压等环境条件下的力学行为,验证了ZrCuNiAlAg块体非晶合金JH-2模型准确性。
  • 图  1  压缩试样断裂前后

    Figure  1.  Before and after fracture of compressed specimens

    图  2  真实应力-应变曲线

    Figure  2.  Real stress-strain curves

    图  3  动态应力应变曲线

    Figure  3.  Dynamic stress-strain curve

    图  4  飞片及靶板

    Figure  4.  Flyer and target

    图  5  自由面粒子速度历史

    Figure  5.  Velocity history of free surface particles

    图  6  D-u曲线

    Figure  6.  D-u curve

    图  7  p-μ曲线

    Figure  7.  p-μ curve

    图  8  σ1/σ2-p的变化曲线

    Figure  8.  σ1/σ2-p curve

    图  9  有限元模型

    Figure  9.  Finite element model

    图  10  A点速度时间曲线

    Figure  10.  The velocity-time curve of point A

    表  1  SHPB试验结果

    Table  1.   SHPB test results

    气压/MPa应变率/s−1原始尺寸/mm整形片整形片尺寸/mm压缩强度/GPa
    0.176003.84×3.6110×10×0.251.06
    0.2222143.81×3.6410×10×0.251.25
    0.3027833.85×3.6110×10×0.251.46
    0.3531293.82×3.6310×10×0.251.59
    下载: 导出CSV

    表  2  压缩力学性能试验结果

    Table  2.   Test results of compressive mechanical properties

    试验编号$\dot \varepsilon $/s−1σ/GPap/GPaσ*p*
    CMT#14×10−21.230.4070.2110.071
    CMT#24×10−21.240.4090.2130.072
    CMT#34×10−21.240.4160.2130.072
    SHPB#12 2141.250.4180.2150.073
    SHPB#22 7831.460.4890.2510.086
    SHPB#33 1291.590.5290.2730.093
    SHPB#43 1321.640.5710.2820.100
    下载: 导出CSV

    表  3  块体非晶合金碎片准静态压缩试验结果

    Table  3.   Quasi-static compression test results for bulk amorphous alloy fragments

    试验编号$\dot \varepsilon $/s−1σ/GPap/GPaσ*p*
    11×10−21.260.420.2160.074
    22×10−21.410.430.2420.075
    下载: 导出CSV

    表  4  ZrCuNiAlAg块体非晶合金材料模型参数

    Table  4.   Material model parameters

    ρ/(g·cm−3)A1/kPaA2/kPaA3/kPaD1NC
    6.5812.303×1094.716×10108.873×10110.0051.1530.094
    T1/kPaABσHEL/kPaD2MG/kPa
    2.303×1090.2961.035.82×10610.3833.704×106
    下载: 导出CSV

    表  5  计算与试验结果对比

    Table  5.   Comparisons between calculated results and experimental results

    试验编号试验速度/(m·s−1)计算速度/(m·s−1)误差/%
    13503402.9
    23903792.8
    34394272.7
    45024892.6
    55505352.7
    下载: 导出CSV
  • [1] INOUE A, TAKEUCHI A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys [J]. Materials Science & Engineering A, 2004, 43(8): 16–30. DOI: 10.1016/j.msea.2003.10.159.
    [2] SHENG H W, LUO W K, ALAMGIR F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439(7075): 419–425. DOI: 10.1038/nature04421.
    [3] MIRACLE D B. A structural model for metallic glasses [J]. Nature Materials, 2004, 3(10): 692–702. DOI: 10.1038/nmat1205.
    [4] LI Yaoqi, SONG Min, HE Yuehui. Effect of quenching mode on the mechanical properties of a Zr64Al10Ni15Cu11 metallic glass [J]. Materials and Design, 2010, 31(7): 3555–3558. DOI: 10.1016/j.matdes.2010.01.040.
    [5] 仇在宏, 杨元政, 赵德强, 等. 锆基块体非晶合金的力学性能研究进展 [J]. 金属功能材料, 2004, 11(5): 25–27. DOI: 10.3969/j.issn.1005-8192.2004.05.008.

    QIU Zaihong, YANG Yuanzheng, ZHAO Deqiang, et al. Progress in mechanical properties of Zr-based bulk amorphous alloys [J]. Metallic Functional Materials, 2004, 11(5): 25–27. DOI: 10.3969/j.issn.1005-8192.2004.05.008.
    [6] INOUE A, YOKOYAMA Y, SHINOHARA Y, et al. Preparation of bulk Zr-base amorphous alloy by a zone melting method [J]. Mater Trans, JIM, 1994, 35(2): 923–926. DOI: 10.2320/matertrans1989.35.923.
    [7] 蒋维科. Zr基块体非晶合金的制备及力学性能研究[D]. 兰州: 兰州理工大学, 2013.
    [8] 寇生中, 黄文军, 郑宝超, 等. Y元素添加对Zr基非晶形成和力学性能的影响 [J]. 铸造工程, 2010, 31(11): 1430–1431.

    KOU Shengzhong, HUANG Wenjun, ZHEN Baochao, et al. Glass forming ability and mechanical property of Zr-based alloy with the addition of yttrium [J]. Foundry Technology, 2010, 31(11): 1430–1431.
    [9] 武晓峰, 张海峰, 李宏, 等. Zr基大块非晶合金的微区变形及力学性能 [J]. 中国有色金属学报, 2003, 13(6): 1368–1371. DOI: 10.3321/j.issn:1004-0609.2003.06.008.

    WU Xiaofeng, ZHANG Haifeng, LI Hong, et al. Deformation and mechanical properties of Zr-based bulk metallic glasses under nanoindenter [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1368–1371. DOI: 10.3321/j.issn:1004-0609.2003.06.008.
    [10] MAO J, ZHANG H F, HUA M F, et al. Effects of casting temperature on mechanical properties of Zr-based metallic glasses [J]. Materials Science and Engineering, 2010, A527: 981–985. DOI: 10.1016/j.msea.2009.09.040.
    [11] 邢秋玮. 锆基非晶合金力学性能影响因素的研究[D]. 兰州: 兰州理工大学, 2013. DOI: 10.7666/d.Y2445918.
    [12] 李杳奇. Zr基块体非晶合金压缩力学性能的研究[D]. 长沙: 中南大学, 2011. DOI: 10.7666/d.y1915234.
    [13] MA G, ZHU Z, WANG Z, et al. Deformation behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures [J]. Journal of Materials Science & Technology, 2015, 31(9): 941–945. DOI: 10.1016/j.jmst.2015.06.001.
    [14] WANG Weihua, WEI Ping, WANG Limin, et al. Equation of state of bulk metallic glasses studied by an ultrasonic method [J]. Applied Physics Letters, 2001, 79(24): 3947–3949. DOI: 10.1063/1.1426272.
    [15] PAN M X, WANG W H, ZHAO D Q, et al. The equation of state and potential function of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Journal of Physics: Condensed Matter, 2002(14): 5665–5671. DOI: 10.1088/0953-8984/14/23/302.
    [16] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究[D]. 南京: 南京理工大学: 2016.
    [17] 石永相, 施冬梅. ZrCuNiAlAg块体非晶合金动静态力学性能研究 [J]. 热加工工艺, 2019, 48(6): 83–86. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.

    SHI Yongxiang, SHI Dongmei. Study on dynamic and static mechanical properties of ZrCuNiAlAg bulk amorphous alloy [J]. Hot Working Technology, 2019, 48(6): 83–86. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.
    [18] 罗兴柏, 张玉令, 丁玉葵.爆炸力学理论教程[M]. 北京:国防工业出版社, 2016: 210.
    [19] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 464–468. DOI: 10.11883/1001-1455(2010)05-0463-09.

    YANG Zhenqi, PANG Baojun, WANG Liwen, et al. JH-2 model and its application to numericals imulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 464–468. DOI: 10.11883/1001-1455(2010)05-0463-09.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  5861
  • HTML全文浏览量:  1565
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2019-07-04
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回