高应力岩体爆破卸荷过程中应变率及应变能特征

陈洋 吴亮 陈明 向晓锐 杨德明

陈洋, 吴亮, 陈明, 向晓锐, 杨德明. 高应力岩体爆破卸荷过程中应变率及应变能特征[J]. 爆炸与冲击, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225
引用本文: 陈洋, 吴亮, 陈明, 向晓锐, 杨德明. 高应力岩体爆破卸荷过程中应变率及应变能特征[J]. 爆炸与冲击, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225
CHEN Yang, WU Liang, CHEN Ming, XIANG Xiaorui, YANG Deming. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass[J]. Explosion And Shock Waves, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225
Citation: CHEN Yang, WU Liang, CHEN Ming, XIANG Xiaorui, YANG Deming. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass[J]. Explosion And Shock Waves, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225

高应力岩体爆破卸荷过程中应变率及应变能特征

doi: 10.11883/bzycj-2018-0225
基金项目: 国家自然科学基金(51479147,51779193);武汉科技大学研究生创新创业基金(JCX2017026)
详细信息
    作者简介:

    陈 洋(1994- ),男,硕士研究生,chenyangwust@sina.com

    通讯作者:

    吴 亮(1980- ),男,博士,副教授,wuliangwust@sina.com

  • 中图分类号: O382.2

Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass

  • 摘要: 针对高应力岩体爆破开挖卸载问题,自制了一台轴向加、卸载实验测试平台,通过实验测试获得了爆破卸荷过程中岩杆的动态应变及应变率数据。实测数据表明:开挖面附近岩体的爆破加、卸载以及初始应力卸载应变率均在10−1 s−1量级以上,验证了高地应力区岩体爆破开挖卸荷是一动态过程。建立了初始应力卸载一维力学模型,揭示了卸载波的传播机制;通过分析爆破卸荷过程应变能密度的时空分布特征,建立了应变能密度与各阶段应变率变化规律的联系。结合实测数据,采用隐式-显式顺序求解方法,进一步分析了高应力区岩体爆破卸荷荷载各阶段应变率沿岩杆的变化规律。结果表明:爆破加载阶段的平均应变率沿杆件逐渐衰减,且衰减速度逐渐减小;爆破卸阶段平均应变率沿杆件也呈衰减趋势;而初始应力的应变能稳定释放,其平均应变率无衰减趋势。
  • 图  1  地下厂房洞室群开挖程序图

    Figure  1.  Scheme of excavation procedure for underground hydropower station

    图  2  地下厂房底板爆破区

    Figure  2.  Blasting area of the floor in an underground hydropower station

    图  3  一维初始应力卸载力学模型

    Figure  3.  one-dimensional mechanical model of initial stress unloading

    图  4  岩杆轴向加、卸载实验装置

    Figure  4.  The experimental device for axial loading and unloading on a rock bar

    图  5  不同位置处动态应变曲线实验结果与理论结果的比较

    Figure  5.  Comparison between experimental and theoretical results for dynamic strain curves at different positions

    图  6  爆破卸载实验示意图

    Figure  6.  Schematic diagram of blasting unloading experiment

    图  7  实验中应变计2实测的动态应变信号

    Figure  7.  Dynamic strain signals measured by strain gauge 2

    图  8  数值计算模型

    Figure  8.  Numerical calculation model

    图  9  HJC模型中岩石的静水压力p与体积应变μ的关系

    Figure  9.  Relation between hydrostatic pressure p and volume strain μ of rock in the HJC model

    图  10  不同应力水平下动态应变及对应的荷载曲线

    Figure  10.  Dynamic strain and corresponding load curves under different stress levels

    图  11  动态应变时程曲线

    Figure  11.  Dynamic strain varying with time

    图  12  爆破加载阶段平均应变率沿杆的分布曲线

    Figure  12.  Distribution of average strain rate along the bar in the loading stage of blasting load

    图  13  爆破荷载卸载阶段平均应变率沿杆的分布曲线

    Figure  13.  Distribution of average strain rate along the barin the unloading stage of blasting load

    图  14  初始应力卸载阶段应变率峰值沿杆的分布曲线

    Figure  14.  Distribution of average strain rate along the bar in the unloading stage of initial stress

    图  15  应变能密度时空分布

    Figure  15.  Space-time distribution of strain energy density

    表  1  不同初始应力下爆破实验各阶段应变率

    Table  1.   Average strain rates at various stages in blasting experiments under different initial stresses

    应变计0 MPa5 MPa10 MPa
    阶段 1阶段 2阶段 1阶段 2阶段 3阶段 1阶段 2阶段 3
    1#−7.282.95−14.487.031.47−18.7613.244.09
    2#−6.742.61 −6.275.171.45−13.43 7.743.31
    3#−5.623.56 −3.463.721.31−14.65 6.254.24
    下载: 导出CSV
  • [1] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制 [J]. 岩石力学与工程学报, 2003, 22(2): 177–181. DOI: 10.3321/j.issn:1000-6915.2003.02.002.

    QI Chengzhi, QIAN Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177–181. DOI: 10.3321/j.issn:1000-6915.2003.02.002.
    [2] CHONG K P, HOYT P M, SMITH J W, et al. Effects of strain rate on oil shale fracturing [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(1): 35–43. DOI: 10.1016/0148-9062(80)90004-2.
    [3] GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
    [4] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, 2007, 32(8/14): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [5] 周子龙, 李夕兵, 岩小明. 岩石SHPB测试中试样恒应变率变形的加载条件 [J]. 岩石力学与工程学报, 2009, 28(12): 2445–2452. DOI: 10.3321/j.issn:1000-6915.2009.12.009.

    ZHOU Zilong, LI Xibing, YAN Xiaoming. Loading condition for specimen deformation at constant strain rate in SHPB test of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2445–2452. DOI: 10.3321/j.issn:1000-6915.2009.12.009.
    [6] 卢志堂, 王志亮. 中高应变率下花岗岩动力特性三轴试验研究 [J]. 岩土工程学报, 2016, 38(6): 1087–1094. DOI: 10.11779/CJGE201606016.

    LU Zhitang, WANG Zhiliang. Triaxial tests on dynamic properties of granite under intermediate and high strain rates [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1087–1094. DOI: 10.11779/CJGE201606016.
    [7] ZHAO J, LI H B. Experimental determination of dynamic tensile properties of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 861–866. DOI: 10.1016/S1365-1609(00)00015-0.
    [8] 李海波, 赵坚, 李俊如, 等. 三轴情况下花岗岩动态力学特性的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 470–474.

    LI Haibo, ZHAO Jian, LI Junru, et al. Triaxial compression tests of a granite [J]. Explosion and Shock Waves, 2004, 24(5): 470–474.
    [9] 张学峰, 夏源明. 中应变率材料试验机的研制 [J]. 实验力学, 2001, 16(1): 13–18. DOI: 10.7666/d.y359905.

    ZHANG Xuefeng, XIA Yuanming. Development of material testing apparatus for intermediate strain rate test [J]. Journal of Experimental Mechanics, 2001, 16(1): 13–18. DOI: 10.7666/d.y359905.
    [10] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [C] // 第十五届全国岩石动力学学术会议论文选集, 2017: 72−82. DOI: 10.13465/j.cnki.jvs.2018.15.008

    XU Songlin, WANG Pengfei, SHAN Junfang, et al. Dynamic behavior of concrete under static triaxial confinement [C] // The Fifteenth National Symposium on Rock Dynamics, 2017: 72−82. DOI: 10.13465/j.cnki.jvs.2018.15.008
    [11] 于亚伦. 岩石动力学 [M]. 北京: 北京科技大学出版社, 1990: 1−50.
    [12] 赵亚溥. 裂纹动态起始问题的研究进展 [J]. 力学进展, 1996, 26(3): 362–378. DOI: 10.6052/1000-0992-1996-3-j1996-030.

    ZHAO Yapu. The advances of studies on the dynamic initiation of cracks [J]. Advances in Mechanics, 1996, 26(3): 362–378. DOI: 10.6052/1000-0992-1996-3-j1996-030.
    [13] 吴绵拔, 刘远惠. 中等应变速率对岩石力学特性的影响 [J]. 岩土力学, 1980(1): 54–61. DOI: 10.16285/j.rsm.1980.01.004.

    WU Mianba, LIU Yuanhui. The effect of intermediate strain rates on mechanical properties of rock [J]. Rock and Soil Mechanics, 1980(1): 54–61. DOI: 10.16285/j.rsm.1980.01.004.
    [14] LU Wenbo, YANG Jianhua, YAN Peng, et al. Dynamic response of rock mass induced by the transient release of in-situ stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129–141. DOI: 10.1016/j.ijrmms.2012.05.001.
    [15] 严鹏, 卢文波, 许红涛. 高地应力条件下隧洞开挖动态卸荷的破坏机理初探 [J]. 爆炸与冲击, 2007, 27(3): 283–288. DOI: 10.11883/1001-1455(2007)03-0283-06.

    YAN Peng, LU Wenbo, XU Hongtao. A primary study to damage mechanism of initial stress dynamic unloading when excavating under high geo-stress condition [J]. Explosion and Shock Waves, 2007, 27(3): 283–288. DOI: 10.11883/1001-1455(2007)03-0283-06.
    [16] BAUCH E, LEMMP C. Rock splitting in the surrounds of underground openings: an experimental approach using triaxial extension test [C] // HACK R, CHARLIER R. Engineering Geology for Infrastructure Planning in Europe. Berlin: Springer-Verlag, 2004: 244−254. DOI: 10.1007/978-3-540-39918-6_29.
    [17] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2194. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU Wenbo, ZHOU Chuangbing, CHEN Ming, et a1. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2194. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [18] 蔡德文. 二滩地下厂房围岩的变形特征 [J]. 水电站设计, 2000, 16(4): 54–61. DOI: 10.3969/j.issn.1003-9805.2000.04.011.

    CAI Dewen. Deformation characteristics of surrounding rock during excavation in Ertan Underground Hydropower Station [J]. Design of Hydropower Station, 2000, 16(4): 54–61. DOI: 10.3969/j.issn.1003-9805.2000.04.011.
    [19] 许红涛. 岩石高边坡爆破动力稳定性研究[D]. 武汉: 武汉大学, 2006.

    XU Hongtao. Study on the dynamic stability of high rock slope induced by blasting vibration [D]. Wuhan: Wuhan University, 2006.
    [20] ARFKEN G B, WEBER H J, HARRIS F E. Mathematical methods for physicists: a comprehensive guide [M]. 7th ed. Academic Press, 2012. DOI: 10.1063/1.3034326.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  6046
  • HTML全文浏览量:  1795
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-21
  • 修回日期:  2019-06-11
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回