基于机械振动理论的垂直侵彻弹靶作用模型

程祥利 赵慧 李林川 叶海福

程祥利, 赵慧, 李林川, 叶海福. 基于机械振动理论的垂直侵彻弹靶作用模型[J]. 爆炸与冲击, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242
引用本文: 程祥利, 赵慧, 李林川, 叶海福. 基于机械振动理论的垂直侵彻弹靶作用模型[J]. 爆炸与冲击, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242
CHENG Xiangli, ZHAO Hui, LI Linchuan, YE Haifu. Projectile target response model for normal penetration process based on mechanical vibration theory[J]. Explosion And Shock Waves, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242
Citation: CHENG Xiangli, ZHAO Hui, LI Linchuan, YE Haifu. Projectile target response model for normal penetration process based on mechanical vibration theory[J]. Explosion And Shock Waves, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242

基于机械振动理论的垂直侵彻弹靶作用模型

doi: 10.11883/bzycj-2018-0242
详细信息
    作者简介:

    程祥利(1984- ),男,博士,助理研究员,chengxiangli126@126.com

    通讯作者:

    叶海福(1982- ),男,硕士,副研究员,yehaifu@126.com

  • 中图分类号: O385

Projectile target response model for normal penetration process based on mechanical vibration theory

  • 摘要: 为了给侵彻引信抗高过载优化设计提供准确的力学输入,将机械振动理论引入侵彻过程建模领域,提出了一种侵彻战斗部刚体运动与一阶轴向振动相结合的垂直侵彻弹靶作用模型。在垂直侵彻过程受力分析的基础上,基于牛顿第二定律建立了战斗部刚体运动模型,基于单自由度弹簧-质量-阻尼系统建立了战斗部一阶轴向振动模型,并采用数值积分的方法获得了垂直侵彻过程中各物理量的变化规律。和火炮试验实测加速度信号的对比分析结果表明:考虑战斗部一阶轴向振动后的垂直侵彻弹靶作用模型能更准确地描述侵彻过程,能更有效地指导侵彻引信的抗高过载优化设计。
  • 图  1  垂直侵彻过程受力分析图

    Figure  1.  Force diagram in normal penetration process

    图  2  单自由度弹簧-质量-阻尼系统

    Figure  2.  Single DOF spring-mass-damper system

    图  3  程序流程图

    Figure  3.  Flow diagram for programming

    图  4  垂直侵彻过程中的刚体过载变化曲线

    Figure  4.  Rigid acceleration curve in normal penetration process

    图  5  垂直侵彻过程中的弹性过载变化曲线

    Figure  5.  Elastic acceleration curve in normal penetration process

    图  6  弹性过载的频谱分析结果

    Figure  6.  Frequency spectrum of elastic acceleration signal

    图  7  战斗部一阶轴向振动的频率响应特性

    Figure  7.  Frequency response characteristics of the first order axial vibration for projectiles

    图  8  垂直侵彻过程中的总过载变化曲线

    Figure  8.  Total acceleration curve in normal penetration process

    图  9  战斗部总过载的频谱分析结果

    Figure  9.  Frequency spectrum of total acceleration signal

    图  10  靶标布置

    Figure  10.  Schematic diagram of the target

    图  11  试验弹

    Figure  11.  Schematic diagram of the projectile

    图  12  实测加速度信号

    Figure  12.  Acceleration data collected

    图  13  实测数据的频谱

    Figure  13.  Frequency spectrum of data collected

    表  1  每层靶的碰靶时刻

    Table  1.   Penetration moment of every layer target

    层数计算结果/ms高速摄像判读结果/ms绝对误差/ms相对误差/%
    第 1 层 0.00 0.00.00
    第 2 层 4.20 4.00.205.00
    第 3 层 8.30 8.00.303.75
    第 4 层12.5012.00.504.17
    第 5 层16.8515.90.955.97
    第 6 层21.3020.31.004.92
    第 7 层25.9025.00.903.60
    第 8 层30.6529.80.852.85
    下载: 导出CSV
  • [1] 李晓峰. 侵彻弹药引信技术 [M]. 北京: 国防工业出版社, 2016: 1−3.
    [2] 王伟力, 黄雪峰, 杨雨潼. 半穿甲战斗部侵彻过程中装药安定性研究 [J]. 海军航空工程学院学报, 2010, 25(1): 79–82. DOI: 10.3969/j.issn.1673-1522.2010.01.019.

    WANG Weili, HUANG Xuefeng, YANG Yutong. Research on the grain safety during the penetration process of semi-armor-piercing warhead [J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(1): 79–82. DOI: 10.3969/j.issn.1673-1522.2010.01.019.
    [3] 张建新. 侵彻引信炸点控制理论及试验研究 [D]. 南京: 南京理工大学, 2012: 1−2.
    [4] 赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(S1): 284–287.

    ZHAO Shengwei, CHU Zhe, LI Ming. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(S1): 284–287.
    [5] 赵南, 王可慧, 李明, 等. 薄壁弹体高速侵彻钢筋混凝土实验研究 [J]. 实验力学, 2017, 32(4): 573–579. DOI: 10.7520/1001-4888-16-179.

    ZHAO Nan, WANG Kehui, LI Ming, et al. Experimental study of high speed penetration of thin-wall projectile in steel reinforced concreete [J]. Journal of Experimental Mechanics, 2017, 32(4): 573–579. DOI: 10.7520/1001-4888-16-179.
    [6] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31-32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6.
    [7] BENDOR G, DUBINSKY A, ELPERIN T. Analytical solution for penetration by rigid conical impactors using cavity expansion models [J]. Mechanics Research Communications, 2000, 27(2): 185–189. DOI: 10.1016/S0093-6413(00)00080-X.
    [8] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [9] 虞青俊, 李玉龙, 金连宝, 等. 侵彻多层混凝土目标弹丸过载特性研究 [J]. 探测与控制学报, 2007, 29(1): 13–17. DOI: 10.3969/j.issn.1008-1194.2007.01.004.

    YU Qingjun, LI Yulong, JIN Lianbao, et al. Research of deceleration-time curves during penetration of multi-plate concrete targets [J]. Journal of Detection & Control, 2007, 29(1): 13–17. DOI: 10.3969/j.issn.1008-1194.2007.01.004.
    [10] 周栋, 吴俊斌. 动能战斗部侵彻混凝土力学响应研究 [J]. 战术导弹技术, 2012(4): 16–19.

    ZHOU Dong, WU Junbin. Research on penetrating concrete effective of kinetic warhead [J]. Tactical Missile Technology, 2012(4): 16–19.
    [11] 徐文亮, 何春, 李朝君. 侵彻爆破型战斗部侵彻性能总体评估系统研究 [J]. 战术导弹技术, 2013(1): 93–100.

    XU Wenliang, HE Chun, LI Chaojun. General evaluation study of penetration warhead’s penetrate capability [J]. Tactical Missile Technology, 2013(1): 93–100.
    [12] 皮爱国, 黄风雷. 大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应 [J]. 爆炸与冲击, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.

    PI Aiguo, HUANG Fenglei. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets [J]. Explosion and Shock Waves, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.
    [13] 王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. DOI: 10.3969/j.issn.1001-0645.2002.04.014.

    WANG Lin, WANG Fuchi, WANG Lu, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. DOI: 10.3969/j.issn.1001-0645.2002.04.014.
    [14] 程兴旺, 王富耻, 王鲁, 等. 钨合金壳体侵彻混凝土靶板过程壳体应变的实验测试 [J]. 兵工学报, 2004, 25(1): 102–105. DOI: 10.3321/j.issn:1000-1093.2004.01.026.

    CHENG Xingwang, WANG Fuchi, WANG Lu, et al. Experimental study on the strain history of critical section during a normal penetration of tungsten alloy shell into a concrete target [J]. Acta Armamentarii, 2004, 25(1): 102–105. DOI: 10.3321/j.issn:1000-1093.2004.01.026.
    [15] 韩学平, 芮筱亭, 王国平, 等. 基于小波的弹性弹丸膛内引信过载研究 [J]. 系统仿真学报, 2008, 20(13): 3496–3499.

    HAN Xueping, RUI Xiaoting, WANG Guoping, et al. Research of fuze overload in bore of flexibility pills based on wavelet method [J]. Journal of System Simulation, 2008, 20(13): 3496–3499.
    [16] 陈学强, 闫明明, 徐晓辉, 等. 微加速度计在高冲击下的断裂失效分析 [J]. 仪表技术与传感器, 2014(2): 16–19. DOI: 10.3969/j.issn.1002-1841.2014.02.006.

    CHEN Xueqiang, YAN Mingming, XU Xiaohui, et al. Fracture failure analysis of micro-accelerometer under high impact [J]. Instrument Technique and Sensor, 2014(2): 16–19. DOI: 10.3969/j.issn.1002-1841.2014.02.006.
    [17] 刘燕芳, 郭海波, 潘启智, 等. 多层陶瓷电容器的失效分析 [J]. 电子元件与材料, 2010, 29(11): 72–74. DOI: 10.3969/j.issn.1001-2028.2010.11.021.

    LIU Yanfang, GUO Haibo, PAN Qizhi, et al. Failure analysis of multi-layer ceramic capacitor [J]. Electronic Components and Materials, 2010, 29(11): 72–74. DOI: 10.3969/j.issn.1001-2028.2010.11.021.
    [18] 何涛, 文鹤鸣. 靶体响应力函数的确定方法及其在侵彻力学中的应用 [J]. 中国科学技术大学学报, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.

    HE Tao, WEN Heming. Determination of the analytical forcing function of target response and its applications in penetration mechanics [J]. Journal of University of Science and Technology of China, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.
    [19] 刘波, 杨黎明, 李东杰, 等. 侵彻弹体结构纵向振动频率特性分析 [J]. 爆炸与冲击, 2018, 38(3): 677–682. DOI: 10.11883/bzycj-2016-0282.

    LIU Bo, YANG Liming, LI Dongjie, et al. Analysis of axial vibration frequency for projectile structure in penetration [J]. Explosion and Shock Waves, 2018, 38(3): 677–682. DOI: 10.11883/bzycj-2016-0282.
    [20] 罗梦翔, 刘涛, 蔡国平. 导弹振动的动力学建模和频率分析 [J]. 中国科技论文, 2015, 10(16): 1924–1927. DOI: 10.3969/j.issn.2095-2783.2015.16.012.

    LUO Mengxiang, LIU Tao, CAI Guoping. Dynamics modeling and frequency analysis of missile vibration [J]. China Science Paper, 2015, 10(16): 1924–1927. DOI: 10.3969/j.issn.2095-2783.2015.16.012.
    [21] 季文美. 机械振动 [M].北京: 科学出版社, 2016: 68−69.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5181
  • HTML全文浏览量:  1600
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-03
  • 修回日期:  2018-09-08
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回