弹体高速侵彻钢筋混凝土的实验与数值模拟研究

马天宝 武珺 宁建国

马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275
引用本文: 马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275
MA Tianbao, WU Jun, NING Jianguo. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete[J]. Explosion And Shock Waves, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275
Citation: MA Tianbao, WU Jun, NING Jianguo. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete[J]. Explosion And Shock Waves, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275

弹体高速侵彻钢筋混凝土的实验与数值模拟研究

doi: 10.11883/bzycj-2018-0275
基金项目: 国家自然科学基金(11390363,11472036)
详细信息
    作者简介:

    马天宝(1981- ),男,博士,副教授,madabal@bit.edu.cn

    通讯作者:

    宁建国(1963- ),男,博士,教授,jgning@bit.edu.cn

  • 中图分类号: O385

Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete

  • 摘要: 为了得到钢筋混凝土目标在动能弹高速冲击作用下的破坏数据,基于大口径发射平台进行了100 mm口径卵形弹体高速侵彻钢筋混凝土靶体的实验,弹体质量为5.4 kg,靶体尺寸分为2 m × 2 m × 1.25 m 和 2 m × 2 m × 1.50 m两种,混凝土抗压强度为50 MPa,弹体侵彻速度为1 345~1 384 m/s,实验获得了弹体的侵彻深度及钢筋混凝土靶体的破坏数据。通过“钢筋混凝土全体单元分离式共节点建模方法”建立钢筋混凝土靶体模型,结合Riedel-Hiermaier-Thoma本构模型对实验工况进行计算。数值模拟给出了侵彻过程中钢筋的拉压力变化和分布规律,很好地模拟出贴近迎弹面钢筋在弹体高速冲击作用下伴随混凝土反向飞溅而产生的反向拉伸现象及靶体背面钢筋在混凝土崩落作用下发生的拉伸现象;数值模拟得到的弹体侵深数据、现象与实验结果吻合良好,实验验证了“钢筋混凝土全体单元分离式共节点建模方法”的可靠性。
  • 图  1  实验弹体

    Figure  1.  Projectile used in the experiment

    图  2  两种钢筋混凝土靶体结构的尺寸

    Figure  2.  Sizes of two reinforced concrete target structures

    图  3  实验布设

    Figure  3.  Schematic layout of experimental devices

    图  4  弹体以1 345 m/s的速度冲击钢筋混凝土靶体的高速摄影图像

    Figure  4.  High-speed photographic images for a projectile with the initial velocity of 1 345 m/s penetrating into a reinforced concrete target

    图  5  不同厚度的靶体在不同初始速度的弹体冲击作用下正反面的破坏现象

    Figure  5.  Damaged front and rear surfaces of the targets with different thicknesses impacted by the projectiles with different initial velocities

    图  6  第3发实验的靶体破坏细节

    Figure  6.  Target destruction details in test 3

    图  7  第4发实验的靶体破坏细节

    Figure  7.  Target destruction details in test 4

    图  8  钢筋混凝土靶表面板破坏数据记录方法

    Figure  8.  The recording method for caving sizes of reinforced concrete targets

    图  9  钢筋混凝土全体单元分离式共节点建模

    Figure  9.  Common node modeling of reinforced concrete

    图  10  在初始撞击速度为1 384 m/s的侵彻过程中尺寸为2 m×2 m×1.25 m的钢筋混凝土靶体的应力分布

    Figure  10.  Effective stress distribution in the reinforced concrete target with the size of 2 m×2 m× 1.25 m during the penetration process with the initial impact velocity of 1 384 m/s

    图  11  在初始撞击速度为1 384 m/s的侵彻过程中尺寸为2 m×2 m×1.25 m的钢筋混凝土靶体内部钢筋网拉压力分布

    Figure  11.  Tensile and compressive stress distribution of steel mesh in the reinforced concrete target with the size of 2 m×2 m× 1.25 m during the penetration process at the initial impact velocity of 1 384 m/s

    图  12  在初始撞击速度为1 384 m/s的侵彻下尺寸为2 m×2 m×1.25 m的钢筋混凝土靶体的破坏

    Figure  12.  Damage of the reinforced concrete target with the size of 2 m×2 m×1.25 m at the initial impact velocity of 1 384 m/s

    图  13  提取到的钢筋与混凝土共节点的位置分布

    Figure  13.  Distribution of the selected common nodes between steel reinforcement and concrete

    图  14  靶体内部同一截面内、不同位置处,钢筋与混凝土共节点的位移对比(第5层)

    Figure  14.  Displacement of the common nodes between steel reinforcement and concrete at different positions in the same layer (the fifth layer)

    图  15  靶体内部不同深度,钢筋与混凝土共节点C的位移

    Figure  15.  The displacement of the common node C between steel reinforcement and concrete at different depths

    图  16  数值模拟侵彻深度与实验数据的对比

    Figure  16.  Comparison of penetration depths between numerical and experimental results

    表  1  实验工况及结果

    Table  1.   Experimental conditions and results

    实验编号靶板尺寸弹体速度/(m·s−1)弹体深度/cm状态
    12 m × 2 m × 1.25 m1 370 59击中钢筋
    22 m × 2 m × 1.25 m1 384102未击中钢筋
    32 m × 2 m × 1.50 m1 345 73未击中钢筋
    42 m × 2 m × 1.50 m1 347 49击中钢筋
    下载: 导出CSV

    表  2  靶体迎弹面混凝土崩落数据

    Table  2.   Concrete caving data of target front surface

    实验编号D1/cmD2/cmD3/cmD4/cmD/cm
    1116.2111.7151.9127.4126.8
    2110.0107.1134.2127.7119.8
    3161.3148.4264.5197.4192.9
    4148.4138.5160.5173.6155.3
    下载: 导出CSV

    表  3  弹体和钢筋的材料参数

    Table  3.   Material parameters of projectiles and rebar

    材料密度/(g·cm−3)弹性模量/GPa泊松比屈服强度/MPa
    弹体7.852070.3835
    钢筋7.802100.3235
    下载: 导出CSV
  • [1] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [2] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [3] 武海军, 黄风雷, 王一楠. 高速弹体非正侵彻混凝土试验研究 [C] // 第八届全国爆炸力学学术会议论文集. 江西吉安: 中国力学学会爆炸力学专业委员会, 2007: 488−494.
    [4] 梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.

    LIANG Bin, CHEN Xiaowei, JI Yongqiang, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
    [5] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE Xiang, XU Xiangyun, SUN Guijuan, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [6] 王可慧, 宁建国, 李志康. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.

    WANG Kehui, NING Jianguo, LI Zhikang, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
    [7] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.

    WU Haijun, ZHANG Shuang, HUANG Fenglei. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
    [8] 王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板-钢纤维钢筋混凝土遮弹层设计方法: Ⅱ [J]. 爆炸与冲击, 2002, 22(2): 163–168.

    WANG Mingyang, QIAN Qihu, ZHAO Yuetang. Design method of steel fiber concrete shelter plate under contact detonation: Ⅱ [J]. Explosion and Shock Waves, 2002, 22(2): 163–168.
    [9] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual[M]. Version 971. Livermore, CA : Livermore Software Technology Corporation, 2012.
    [10] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-include damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [11] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressure [C] // Proceedings of the fourteenth International Symposium on Ballistics. Quebec, Canada: ISIEMS, 1993: 591−600. DOI: 10.1115/1.4004326.
    [12] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500: numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of the Ninth International Symposiumon on Interaction of the Effects of Munitions with Structures. Berlin, Germany: ISIEMS, 1999: 315−322.
    [13] BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C] // Proceedings of the Eighth European LS-DYNA User Conference. Strasbourg, France: LSTC, 2011: 1−14.
    [14] HECKÖTTER C, SIEVERS J. Simulation of impact tests with hard, soft and liquid filled missiles on reinforced concrete structures [J]. Journal of Applied Mechanics, 2013, 80(3): 1805.
    [15] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  5692
  • HTML全文浏览量:  1957
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-27
  • 修回日期:  2018-11-09
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回