吸能包装模型结构的冲击响应

谢若泽 钟卫洲 黄西成 张方举

谢若泽, 钟卫洲, 黄西成, 张方举. 吸能包装模型结构的冲击响应[J]. 爆炸与冲击, 2019, 39(10): 103103. doi: 10.11883/bzycj-2018-0311
引用本文: 谢若泽, 钟卫洲, 黄西成, 张方举. 吸能包装模型结构的冲击响应[J]. 爆炸与冲击, 2019, 39(10): 103103. doi: 10.11883/bzycj-2018-0311
XIE Ruoze, ZHONG Weizhou, HUANG Xicheng, ZHANG Fangju. Impact response of scaled models of an energy-absorbing container[J]. Explosion And Shock Waves, 2019, 39(10): 103103. doi: 10.11883/bzycj-2018-0311
Citation: XIE Ruoze, ZHONG Weizhou, HUANG Xicheng, ZHANG Fangju. Impact response of scaled models of an energy-absorbing container[J]. Explosion And Shock Waves, 2019, 39(10): 103103. doi: 10.11883/bzycj-2018-0311

吸能包装模型结构的冲击响应

doi: 10.11883/bzycj-2018-0311
基金项目: 国家自然科学基金(11472257, 11572299)
详细信息
    作者简介:

    谢若泽(1970- ),男,硕士,研究员,xierz@caep.cn

    通讯作者:

    钟卫洲(1978- ),男,博士,研究员,zhongwz@caep.cn

  • 中图分类号: O347

Impact response of scaled models of an energy-absorbing container

  • 摘要: 利用空气炮冲击实验对吸能包装结构的跌落过程进行模拟,进行了缩比模型的正撞和30°斜撞实验,针对模型实验进行了数值分析,获得了吸能包装结构模型在撞击过程中的应力分布和塑性变形,并将计算情况与实验结果进行了分析。结果表明:在撞击中吸能包装结构主要通过缓冲木材的塑性变形及外钢壳屈曲产生的塑性铰吸收能量,塑性变形主要集中于撞击端,而远离撞击端未见塑性变形;计算中木材本构参数采用顺纹方向压缩应力应变曲线具有一定的有效性。
  • 图  1  基于包装结构缩比模型的弹丸

    Figure  1.  Projectile based on scaled model of container

    图  2  试验弹照片

    Figure  2.  Photo of experimental projectiles

    图  3  正撞实验靶板安装图

    Figure  3.  Targets in normal impact experiments

    图  4  30°斜撞实验靶板安装图

    Figure  4.  Target in oblique impact experiments

    图  5  试件正撞过程高速摄影照片

    Figure  5.  Process of normal impact

    图  6  正撞实验后模型弹形貌

    Figure  6.  Recovery projectiles after normal impact experiment

    图  7  2#弹正撞实验撞击力历程

    Figure  7.  Impact force history in normal impact experiment (projectile 2#)

    图  8  正撞实验后弹体内部结构

    Figure  8.  Internal structure of recovery projectiles of normal impact experiment

    图  9  试件斜撞过程高速摄影照片

    Figure  9.  Process of oblique impact

    图  10  斜撞实验后弹体形貌

    Figure  10.  Recovery projectiles after oblique impact experiment

    图  11  斜撞实验后弹体解剖照片(63.4 m/s)

    Figure  11.  Internal structure of recovery projectiles after oblique impact at the velocity of 63.4 m/s

    图  12  正撞整体模型网格图

    Figure  12.  FEA meshes for normal impact

    图  13  30°斜撞整体模型网格图

    Figure  13.  FEA meshes for oblique impact

    图  14  2#弹撞击力试验测试与数值模拟比较

    Figure  14.  Impact force comparison between experiment and numerical simulation (projectile 2#)

    图  15  整体变形计算与实验结果对比图(68.0 m/s,正撞)

    Figure  15.  Comparison of global deformation between simulation and experiment of projectile (68.0 m/s, normal impact)

    图  16  整体变形计算与实验结果对比图(63.4 m/s斜撞)

    Figure  16.  Comparison of global deformation between simulation and experiment of projectile (63.4 m/s, oblique impact)

    图  17  撞击端木垫层变形图(63.4 m/s斜撞)

    Figure  17.  Deformation of cushion at the collided end (63.4 m/s, oblique impact)

    表  1  弹丸撞击速度

    Table  1.   Impact velocity of projectile

    撞击方向弹号质量/g气压/MPa弹速/(m∙s−1)
    正撞1#3 4050.2030.4
    2#3 4150.3044.5
    3#3 4500.5568.0*
    30°斜撞4#3 3700.2030.3
    5#3 4100.3044.1
    6#3 4200.5563.4
     注:*测速系统未采到数据,此为根据高速摄影估算。
    下载: 导出CSV

    表  2  弹靶材料力学性能参数

    Table  2.   Material properties of projectiles and targets

    材料名称ρ/(kg∙m−3)E/GPaνσs/MPaEP/MPa失效应变
    45钢7 8102120.3Johnson-Cook模型
    云杉41311.330.1采用实验测试顺纹方向压缩曲线
    Q2357 8002100.32352 1000.8
    20钢7 8502110.2862452 1100.4
    下载: 导出CSV
  • [1] JOSEPH C, MALONEY Jr. The History and Significance of Military Packaging: TECHNICAL REPORT 1-96 [R]. Fort Belvoir: Defense Systems Management College Press, 1996.
    [2] 肖冰, 黄晓霞, 彭天秀. 国外弹药包装的现状与发展趋势研究 [J]. 包装工程, 2005, 26(5): 220–227. DOI: 10.3969/j.issn.1001-3563.2005.05.088.
    [3] 周定如, 蔡建, 赵耀辉, 等. 美国军用包装技术发展的经验和启示 [J]. 包装工程, 2010, 31(7): 80–83.

    ZHOU Dingru, CAI Jian, ZHAO Yaohui, et al. Enlightenment from the experience in development of U.S. military packaging technique [J]. Packaging Engineering, 2010, 31(7): 80–83.
    [4] 苏远. 缓冲包装理论基础与应用[M]. 北京: 化学工业出版社, 2006: 1–15.
    [5] 王保乾. 有效载荷抗事故包装箱的环境与环境试验 [J]. 环境技术, 1995(4): 7–12.

    WANG Baoqian. Environments and environmental test of accident-resistant containers for payload [J]. Environmental Technology, 1995(4): 7–12.
    [6] 李明海, 翟贵立, 宋耀祖, 等. 抗事故包装箱热防护结构的设计及其性能分析 [J]. 包装工程, 2000, 21(2): 5–8. DOI: 10.3969/j.issn.1001-3563.2000.02.002.

    LI Minghai, ZHAI Guili, SONG Yaozu, et al. Design and performance analyses of thermal protection structure of accident-resistant packaging container [J]. Packaging Engineering, 2000, 21(2): 5–8. DOI: 10.3969/j.issn.1001-3563.2000.02.002.
    [7] 李明海, 任建勋, 罗群生, 等. 钢-木组合结构在火灾中的热响应数值模拟 [J]. 清华大学学报, 2001, 41(2): 68–71. DOI: 10.3321/j.issn:1000-0054.2001.02.018.

    LI Minghai, REN Jianxun, LUO Qunsheng, et al. Numerical simulation of the thermal response of steel- wood composite structure on fire [J]. Journal of Tsinghua University, 2001, 41(2): 68–71. DOI: 10.3321/j.issn:1000-0054.2001.02.018.
    [8] 胡宇鹏, 罗群生, 李友荣, 等. 不同压力下具有内热源的包装箱内传热特性 [J]. 包装工程, 2016, 37(11): 1–5.

    HU Yupeng, LUO Qunsheng, LI Yourong, et al. Heat transfer characteristics of a product with an inner heat source in a packaging container under different pressures [J]. Packaging Engineering, 2016, 37(11): 1–5.
    [9] 张鹏, 王文博, 王宏伟. ANSYS软件在导弹包装箱设计中的应用研究 [J]. 航空科学技术, 2015, 26(4): 53–57. DOI: 10.3969/j.issn.1007-5453.2015.04.011.

    ZHANG Peng, WANG Wenbo, WANG Hongwei. The application of ansys software on missile packing design [J]. Aeronautical Science and Technology, 2015, 26(4): 53–57. DOI: 10.3969/j.issn.1007-5453.2015.04.011.
    [10] 李娜, 刘剑钊, 张思才, 等. 抗事故包装箱碰撞过程靶体等效方法研究 [J]. 包装工程, 2016, 37(11): 25–38.

    LI Na, LIU Jianzhao, ZHANG Sicai, et al. Equivalent method for the targets in impact process of accident-resistant packaging container [J]. Packaging Engineering, 2016, 37(11): 25–38.
    [11] MICHAEL H, GENE H L, LAVERNE E R, et al. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments: SAND80-2517 [R]. Albuquerque, New Moxica: Sandia National Laboratories, 1983: 43–63.
    [12] 鲍平鑫, 宁伟宇, 张卫春. 基于CATIA与ADAMS军用爆炸品包装箱铁路运输冲击仿真实验研究 [J]. 军事交通学院学报, 2012(3): 20–25. DOI: 10.3969/j.issn.1674-2192.2012.03.005.

    BAO Pingxin, NING Weiyu, ZHANG Weichun. Research on impact simulation experment of military explosives packing through railway transportation based on CATIA and ADAMS [J]. Journal of Military Transportation University, 2012(3): 20–25. DOI: 10.3969/j.issn.1674-2192.2012.03.005.
    [13] 葛任伟, 欧阳勇, 张怀宇, 等. 抗事故包装箱缓冲结构厚度计算方法研究 [J]. 机械设计与制造, 2011(12): 38–40. DOI: 10.3969/j.issn.1001-3997.2011.12.015.

    GE Renwei, OUYANG Yong, ZHANG Huaiyu, et al. Research of computing methods for thickness of buffering structure of accident resistant packing cases [J]. Machinery Design and Manufacture, 2011(12): 38–40. DOI: 10.3969/j.issn.1001-3997.2011.12.015.
    [14] 屠兴. 模型实验的基本理论与方法[M]. 西安: 西北工业大学出版社, 1989: 1–10.
    [15] 谈庆明. 量纲分析[M]. 合肥: 中国科学技术大学出版社, 2005: 1–19.
    [16] 罗文泉, 叶霜. 模型实验的相似方法 [J]. 工业加热, 1999, 1(1): 17–19. DOI: 10.3969/j.issn.1002-1639.1999.01.005.

    LUO Wenquan, YE Shuang. Similarity method of model experiment [J]. Industrial Heating, 1999, 1(1): 17–19. DOI: 10.3969/j.issn.1002-1639.1999.01.005.
    [17] 周政, 葛任伟, 卢永刚, 等. 抗事故包装箱抗冲击性能的相似准则 [J]. 包装工程, 2018, 39(7): 31–38.

    ZHOU Zheng, GE Renwei, LU Yonggang, et al. Similarity criteria for impact resistance of accident resistant containers [J]. Packaging Engineering, 2018, 39(7): 31–38.
    [18] 钟卫洲, 宋顺成, 黄西成, 等. 三种加载方向下云杉静动态力学性能研究 [J]. 力学学报, 2011, 43(6): 1141–1150. DOI: 10.6052/0459-1879-2011-6-lxxb2010-450.

    ZHONG Weizhou, SONG Shuncheng, HUANG Xicheng, et al. Research on static and dynamic mechanical properties of spruce wood by three loading directions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1141–1150. DOI: 10.6052/0459-1879-2011-6-lxxb2010-450.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  5167
  • HTML全文浏览量:  1635
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-12-01
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回