高温和高压对乙烷在氧气中爆炸极限影响的实验研究

喻健良 姚福桐 于小哲 闫兴清 罗灿 张炼卓

喻健良, 姚福桐, 于小哲, 闫兴清, 罗灿, 张炼卓. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究[J]. 爆炸与冲击, 2019, 39(12): 122101. doi: 10.11883/bzycj-2018-0381
引用本文: 喻健良, 姚福桐, 于小哲, 闫兴清, 罗灿, 张炼卓. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究[J]. 爆炸与冲击, 2019, 39(12): 122101. doi: 10.11883/bzycj-2018-0381
YU Jianliang, YAO Futong, YU Xiaozhe, YAN Xingqing, LUO Can, ZHANG Lianzhuo. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen[J]. Explosion And Shock Waves, 2019, 39(12): 122101. doi: 10.11883/bzycj-2018-0381
Citation: YU Jianliang, YAO Futong, YU Xiaozhe, YAN Xingqing, LUO Can, ZHANG Lianzhuo. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen[J]. Explosion And Shock Waves, 2019, 39(12): 122101. doi: 10.11883/bzycj-2018-0381

高温和高压对乙烷在氧气中爆炸极限影响的实验研究

doi: 10.11883/bzycj-2018-0381
基金项目: 国家自然科学基金(51604057)
详细信息
    作者简介:

    喻健良(1963- ),男,博士,教授,博士生导师,yujianliang@dlut.edu.cn

  • 中图分类号: O389; X392

Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen

  • 摘要: 获得高温、高压下可燃介质爆炸极限数值,对完善复杂工况下可燃介质燃爆安全理论、构建可燃介质爆炸防护技术提供支持。搭建了适用于开展高温、高压工况的20 L球形爆炸实验装置,测量了初始温度为20~270 ℃,初始压力为0.5~2.6 MPa下乙烷在氧气中的爆炸极限,分析温度、压力单因素对乙烷在氧气中的爆炸极限的影响以及温度和压力双因素的耦合影响。结果表明,随着初始压力和初始温度的提高,乙烷在氧气中的爆炸极限逐渐扩大。在温度小于140 ℃时,在高压和低压两种情况下,压力对乙烷爆炸上限的影响基本一致。在温度高于140 ℃时,压力的升高使乙烷爆炸上限升高,但其影响的效果逐渐减小。在初始压力小于1.6 MPa时,温度的升高使乙烷的爆炸上限升高,但其影响的效果变化很小。在压力大于1.6 MPa,温度高于140 ℃时,温度的升高使乙烷的爆炸上限升高,且其影响的效果逐渐增大。温度和压力的升高均使乙烷的爆炸下限降低,但其影响较小。初始温度和初始压力对乙烷在氧气中爆炸极限的耦合作用略小于两个因素作用的和,但大于单个因素的作用。通过拟合得到了C2H6/O2爆炸极限随初始压力、初始温度变化的定量规律。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  爆炸判据示意图

    Figure  2.  Criteria for determination of explosion

    图  3  不同初始温度下乙烷在氧气中爆炸上限随初始压力变化

    Figure  3.  Pressure dependence of upper explosion limits of ethane in oxygen at elevated temperatures

    图  4  不同初始压力下乙烷在氧气中爆炸上限随初始温度变化

    Figure  4.  Temperature dependence of upper explosion limits of ethane in oxygen at elevated pressures

    图  5  燃烧速度随初始压力变化示意图

    Figure  5.  Illustration of combustion velocity varying with initial pressure

    图  6  乙烷和乙烯燃烧速度随燃料比的变化示意图

    Figure  6.  Illustration of combustion velocity of ethane and vthylene varying with fuel ratio

    图  7  燃烧速度随初始温度变化示意图

    Figure  7.  Illustration of combustion velocity varying with initial temperature

    图  8  初始温度和初始压力对乙烷在氧气中爆炸上限的耦合影响

    Figure  8.  Temperature and pressure dependence of upper explosion limits of ethane in oxygen

    图  9  不同初始温度下乙烷在氧气中爆炸下限随初始压力变化

    Figure  9.  Pressure dependence of lower explosion limits of ethane in oxygen at elevated temperatures

    图  10  不同初始压力下乙烷在氧气中爆炸下限随初始温度变化

    Figure  10.  Temperature dependence of lower explosion limits of ethane in oxygen at elevated pressures

    图  11  初始温度和初始压力对乙烷在氧气中爆炸下限的耦合影响

    Figure  11.  Temperature and pressure dependence of lower explosion limits of ethane in oxygen

    表  1  乙烷在氧气中爆炸上限随初始温度和初始压力变化拟合函数参数

    Table  1.   Fitting function parameters of temperature and pressure dependence of upper explosion limits of ethane in oxygen

    z0BCDEFR2
    72.590.003 91.458.190.57−0.001 40.99
    下载: 导出CSV
  • [1] SCHOOR F V D, VERPLAETSEN F, BERGHMANS J, et al. Experimental and numerical study of the influence of pressure and temperature on the flammability limits of combustible gases in air [C] // 3rd European Combustion Meeting. Greece, 2007.
    [2] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.

    GAO Na, ZHANG Yansong, HU Yiting. Experimental study on methane-air mixtures explosion limits at normal and initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.
    [3] VAN D S F, VERPLAETSEN F, BERGHMANS J. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2008, 33(4): 1399–1406. DOI: 10.1016/j.ijhydene.2008.01.002.
    [4] CUI G, YANG C, LI Z L, et al. Experimental study and theoretical calculation of flammability limits of methane/air mixture at elevated temperatures and pressures [J]. Journal of Loss Prevention in the Process Industries, 2016, 41(5): 252–258. DOI: 10.1016/j.jlp.2016.02.016.
    [5] WAN Xin, ZHANG Qi, SHEN Shilei. Theoretical estimation of the lower flammability limit of fuel-air mixtures at elevated temperatures and pressures [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(7): 13–19. DOI: 10.1016/j.jlp.2015.05.001.
    [6] SCHOOR F V D. Influence of pressure and temperature on flammability limits of combustible gases in air[D]. Katholieke University. 2007.
    [7] MENDIBURU A Z, CARVALHO J A D, CORONADO C R, et al. Determination of lower flammability limits of C-H-O compounds in air and study of initial temperature dependence [J]. Chemical Engineering Science, 2016, 144: 188–200. DOI: 10.1016/j.ces.2016.01.031.
    [8] CATOIRE L, NAUDET V. Estimation of temperature-dependent lower flammability limit of pure organic compounds in air at atmospheric pressure [J]. Process Safety Progress, 2005, 24(2): 130–137. DOI: 10.1002/prs.10072.
    [9] HUSTAD J E, SØNJU O K. Experimental studies of lower flammability limits of gases and mixtures of gases at elevated temperatures [J]. Combustion and Flame, 1988, 71(3): 283–294.
    [10] 刘振翼, 李浩, 邢冀, 等. 不同温度下原油蒸气的爆炸极限和临界氧含量 [J]. 化工学报, 2011, 62(7): 1998–2004. DOI: 10.3969/j.issn.0438-1157.2011.07.032.

    LIU Zhenyi, LI Hao, XING Ji, et al. Explosion limits and critical oxygen content of crude oil vapor at different ambient temperatures [J]. Journal of Chemical Industry and Engineering, 2011, 62(7): 1998–2004. DOI: 10.3969/j.issn.0438-1157.2011.07.032.
    [11] HOLMSTEDT G S. The upper limit of flammability of hydrogen in air, oxygen, and oxygen-inert mixtures at elevated pressures [J]. Combustion and Flame, 1971, 17(3): 295–301.
    [12] CUI G, LI Z, YANG C. Experimental study of flammability limits of methane/air mixtures at low temperatures and elevated pressures [J]. Fuel, 2016, 181(1): 1074–1080. DOI: 10.1016/j.fuel.2016.04.116.
    [13] CRAVEN A D, FOSTER M G. The limits of flammability of ethylene in oxygen, air and air-nitrogen mixtures at elevated temperatures and pressures [J]. Combustion and Flame, 1966, 10(2): 95–100.
    [14] SHEBEKO Y N, TSARICHENKO S G, KOROLCHENKO A Y, et al. Burning velocities and flammability limits of gaseous mixtures at elevated temperatures and pressures [J]. Combustion and Flame, 1995, 102(4): 427–437.
    [15] 李刚, 李玉峰, 苑春苗. 高温和高压下CBM的爆炸极限 [J]. 东北大学学报(自然科学版), 2012(4): 580–583.

    LI Gang, LI Yufeng, YUAN Chunmiao. Explosion limits of CBM at elevated pressure and temperature [J]. Journal of Northeastern University (Natural Science), 2012(4): 580–583.
    [16] Determination of explosion limits of gases and vapours [S]. Brussels: European Committee for Standardisation, 2012.
    [17] LEWIS B. Selected combustion problems [R]. Butter-worths, London, 1954.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4865
  • HTML全文浏览量:  1649
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2019-01-30
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回