非贯通裂隙岩体损伤演化率相关性及变形特征

邓正定 向帅 周尖荣 王观石 王月梅

邓正定, 向帅, 周尖荣, 王观石, 王月梅. 非贯通裂隙岩体损伤演化率相关性及变形特征[J]. 爆炸与冲击, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
引用本文: 邓正定, 向帅, 周尖荣, 王观石, 王月梅. 非贯通裂隙岩体损伤演化率相关性及变形特征[J]. 爆炸与冲击, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
Citation: DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391

非贯通裂隙岩体损伤演化率相关性及变形特征

doi: 10.11883/bzycj-2018-0391
基金项目: 国家自然科学基金(41462009,51768065);江西省教育厅科学技术研究(GJJ170562,GJJ161571)
详细信息
    作者简介:

    邓正定(1987- ),男,博士,讲师,dengzhengding@126.com

  • 中图分类号: O382.2

Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses

  • 摘要: 含非贯通裂隙岩体是自然界中岩体的主要赋存形式,其裂隙几何特征对岩体的强度及变形均产生显著影响。应变率对岩体的损伤演化及黏滞效应也具有显著的率相关性。首先,运用模型元件的方法,将非贯通裂隙岩体动态破坏过程视为具复合损伤、静态弹性特性、动态黏滞特性的非均质点组成,对黏弹性响应的Maxwell体进行改进,将细观损伤体与裂隙损伤演化的宏观损伤体根据等效应变假设并联组成宏细观复合损伤体,构建综合考虑岩体宏细观缺陷的动态损伤模型;其次,基于断裂力学及应变能理论,对岩体宏观裂隙动态扩展的能量机制进行分析,综合考虑初始裂隙应变能、裂隙动态损伤演化过程应变能、裂隙闭合应变能,得到裂隙岩体宏观动态损伤变量计算公式;最后,将模型计算结果与实验结果进行比较,模型计算结果与实验结果吻合较好,证明了模型的合理性,同时利用模型讨论了裂隙倾角、应变率、岩石性质对岩体变形特征的影响规律。
  • 图  1  黏弹性复合损伤动态模型

    Figure  1.  Dynamic model of viscoelastic composite damage

    图  2  裂隙扩展简化模型

    Figure  2.  Simplified model for crack propagation

    图  3  参量ε0对本构关系的影响

    Figure  3.  Influence of parameters ε0 on constitutive relation

    图  4  参量m对本构关系的影响

    Figure  4.  Influence of parameters m on constitutive relation

    图  5  参量η对本构关系的影响

    Figure  5.  Influence of parameters η on constitutive relation

    图  6  参量EM对本构关系影响

    Figure  6.  Influence of parameters EM on constitutive relation

    图  7  裂隙岩体的实验结果与理论计算结果比较

    Figure  7.  Comparison of experimental and theoretical results of fractured rock mass

    图  8  初始损伤变量随裂隙倾角的变化

    Figure  8.  Variation of initial damage with slit angle

    图  9  起裂强度随裂隙倾角的变化

    Figure  9.  Variation of fracture strength with slit angle

    图  10  不同裂隙贯通度的岩体动态应力应变曲线

    Figure  10.  Dynamic stress-strain curves of rock mass with different fracture penetrability

    图  11  应变率对翼裂纹扩展长度的影响

    Figure  11.  Influence of strain rate on length of wing crack

    图  12  应变率对岩体力学特性的影响

    Figure  12.  Influence of strain rateon mechanicalproperties of rock

    图  13  E0对岩体动态力学特性的影响

    Figure  13.  Influence of E0 on mechanical properties

    图  14  KⅠC对岩体动态力学特性的影响

    Figure  14.  Influence of KⅠC on mechanical properties

  • [1] 刘学伟, 刘泉声, 陈元, 等. 裂隙形式对岩体强度特征及破坏模式影响的试验研究 [J]. 岩土力学, 2015, 36(S2): 208–214.

    LIU Xuewei, LIU Quansheng, CHEN Yuan, et al. Experimental study of effects of fracture type on strength characteristics and failure modes of fractured rock mass [J]. Rock and Soil Mechanics, 2015, 36(S2): 208–214.
    [2] 宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595.

    GONG Fengqiang, WANG Jin, LI Xibing. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595.
    [3] 张平, 李宁, 李贺兰. 动载下两条断续预制裂隙贯通机制研究 [J]. 岩石力学与工程学报, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019

    ZHANG Ping, LI Ning, LI Helan. Mechanism of fracture coalescence between two pre-existing flaws under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019
    [4] 刘红岩, 邓正定, 王新生, 等. 节理岩体动态破坏的SHPB相似材料试验研究 [J]. 岩土力学, 2013, 35(3): 659–665.

    LIU Hongyan, DENG Zhengding, WANG Xinsheng. Similar material test study of dynamic failure of jointed rock mass with SHPB [J]. Rock and Soil Mechanics, 2013, 35(3): 659–665.
    [5] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883.

    LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883.
    [6] 李夕兵, 王卫华, 马春德. 不同频率载荷作用下的岩石节理本构模型 [J]. 岩石力学与工程学报, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004

    LI Xibing, WANG Weihua, MA Chunde. Constitutive model of rock joints under compression loads with different frequencies [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004
    [7] 张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型 [J]. 爆炸与冲击, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.

    ZHANG Limin, LU Shuran, LIU Hongyan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws [J]. Explosion and Shock Waves, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.
    [8] 刘红岩, 王新生, 张力民, 等. 非贯通节理岩体单轴压缩动态损伤本构模型 [J]. 岩土工程学报, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001

    LIU Hongyan, WANG Xinsheng, ZAHNG Limin. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001
    [9] 李杰, 王明洋, 张宁, 等. 裂隙岩体动态损伤演化与体积扩容方程 [J]. 岩石力学与工程学报, 2015, 34(8): 1532–1541.

    LI Jie, WANG Mingyang, ZHANG Ning. An equation for damage development and volumetric dilation of cracked rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1532–1541.
    [10] 袁小清, 刘红岩, 刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型 [J]. 岩土力学, 2015, 36(10): 2804–2814.

    YUAN Xiaoqing, LIU Hongyan, LIU Jingping. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages [J]. Rock and Soil Mechanics, 2015, 36(10): 2804–2814.
    [11] 王佩新, 曹平, 蒲成志, 等. 单压下节理密度及倾角对类岩石试件强度及变形的影响 [J]. 工程科学学报, 2017, 39(4): 494–501.

    WANG Peixin, CAO Ping, PU Chengzhi, et al. Effect of the density and inclination of joints on the strength and deformation properties of rock-like specimens under uniaxial compression [J]. Chinese Journal of Engineering, 2017, 39(4): 494–501.
    [12] FAN X, KULATILAKE P H S W, CHEN X, et al. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: a particle flow code approach [J]. Journal of Central South University, 2015, 22(2): 638–645. doi: 10.1007/s11771-015-2565-z
    [13] ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489–521. doi: 10.1007/BF00878002
    [14] LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression [J]. Engineering Fracture Mechanics, 2003, 70(13): 1645–1658. doi: 10.1016/S0013-7944(02)00203-5
    [15] 李世愚, 和泰名, 尹祥础. 岩石断裂力学 [M]. 北京: 科学出版社, 2015.
    [16] 孙广忠, 孙毅. 岩体力学原理 [M]. 北京: 科学出版社, 2011.
    [17] ROSE L R F. Recent theoretical and experimental results on fast brittle fracture [J]. International Journal of Fracture, 1976, 12(6): 799–813.
    [18] FREUND L B, HUTCHINSON J W. Dynamic fracture mechanic [M]. Hemisphere Pub Corp, 1990.
    [19] DENG H, NEMAT-NASSER S. Dynamic damage evolution in brittle solids [J]. Mechanics of Materials, 1992, 14(2): 83–103. doi: 10.1016/0167-6636(92)90008-2
    [20] 宁建国, 任会兰, 方敏杰. 基于椭圆形微裂纹演化与汇合的准脆性材料本构模型 [J]. 科学通报, 2012(21): 1978–1986.

    NING J G, REN H L, FANG M J. A constitutive model based on the evolution and coalescence of elliptical micro-cracks for quasi-brittle materials [J]. Chinese Science Bulletin, 2012(21): 1978–1986.
    [21] 潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响 [J]. 煤炭学报, 2018, 43(3): 675–683.

    PAN Hongyu, GE Di, ZHANG Tianjun, et al. Influence of strain rate on the rock fracture propagation law [J]. Journal of China Coal Society, 2018, 43(3): 675–683.
    [22] 王卫华, 李坤, 王小金, 等. SHPB加载下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2016, 34(18): 246–250.

    WANG Weihua, LI Kun, WANG Xiaojin, et al. Experimental study of mechanical properties of rocklike specimens containing single cracks of different inclination angles under SHPB loading [J]. Science and Technology Review, 2016, 34(18): 246–250.
    [23] 王卫华, 王小金, 姜海涛. 单轴压缩作用下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2014, 32(28/29): 48–53.

    WANG Weihua, WANG Xiaojin, JIANG Haitao. Experimental research on mechanical properties of rocklike specimens containing single cracks of different inclination angles under uniaxial compression [J]. Science and Technology Review, 2014, 32(28/29): 48–53.
    [24] RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2627–2646. doi: 10.1016/0020-7683(94)00286-6
    [25] 杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019

    YANG Shengqi, XU Weiya, WEI Lide. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019
    [26] 李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响 [J]. 爆炸与冲击, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.

    LI Xianglong, WANG Jianguo, ZHANG Zhiyu. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials [J]. Explosion and Shock Waves, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.
  • 加载中
图(14)
计量
  • 文章访问数:  5764
  • HTML全文浏览量:  1633
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-12
  • 修回日期:  2019-02-21
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回