花岗岩晶粒尺寸对岩爆影响的试验研究

苏国韶 陈冠言 胡小川 梅诗明 黄小华

苏国韶, 陈冠言, 胡小川, 梅诗明, 黄小华. 花岗岩晶粒尺寸对岩爆影响的试验研究[J]. 爆炸与冲击, 2019, 39(12): 123103. doi: 10.11883/bzycj-2018-0419
引用本文: 苏国韶, 陈冠言, 胡小川, 梅诗明, 黄小华. 花岗岩晶粒尺寸对岩爆影响的试验研究[J]. 爆炸与冲击, 2019, 39(12): 123103. doi: 10.11883/bzycj-2018-0419
SU Guoshao, CHEN Guanyan, HU Xiaochuan, MEI Shiming, HUANG Xiaohua. Experimental study on influence of granite grain size on rockburst[J]. Explosion And Shock Waves, 2019, 39(12): 123103. doi: 10.11883/bzycj-2018-0419
Citation: SU Guoshao, CHEN Guanyan, HU Xiaochuan, MEI Shiming, HUANG Xiaohua. Experimental study on influence of granite grain size on rockburst[J]. Explosion And Shock Waves, 2019, 39(12): 123103. doi: 10.11883/bzycj-2018-0419

花岗岩晶粒尺寸对岩爆影响的试验研究

doi: 10.11883/bzycj-2018-0419
基金项目: 国家自然科学基金(51869003,51569004);广西研究生教育创新计划(YCBZ2018025)
详细信息
    作者简介:

    苏国韶(1973- ),男,博士,教授,guoshaosu@gxu.edu.cn

    通讯作者:

    胡小川(1990- ),男,博士研究生,h_xchuan@163.com

  • 中图分类号: O382; TV672; TU458

Experimental study on influence of granite grain size on rockburst

  • 摘要: 为探究晶粒尺寸对硬脆性岩石岩爆的影响,利用真三轴岩爆试验系统,对细中、中粗两种不同晶粒尺寸的含预制圆孔花岗岩开展了岩爆模拟试验。试验结果表明:在相同的加载过程中,细中晶粒花岗岩出现板裂静态脆性破坏,而中粗晶粒花岗岩出现岩爆动力破坏;细中晶粒花岗岩早期声发射活动较弱,大破裂、低主频事件在时空分布上较集中,特征应力较大,而中粗晶粒花岗岩早期声发射活动较活跃,大破裂、低主频事件在时空分布上较离散,特征应力较小,碎屑破碎程度更高。晶粒尺寸对花岗岩的岩爆倾向性具有重要影响,晶粒尺寸较大的硬脆性岩石的岩爆倾向性更强。深部地下岩体工程的岩爆倾向性评价中,除强度和脆性外,晶粒尺寸也是需要考虑的重要因素。
  • 图  1  花岗岩偏光显微镜照片

    Figure  1.  Polarized micrograph of granite

    图  2  花岗岩试件

    Figure  2.  Granite specimens

    图  3  真三轴岩爆试验系统

    Figure  3.  True triaxial rockburst testing system

    图  4  加载装置与视频监测系统

    Figure  4.  Loading devices and observation system

    图  5  声发射采集系统和传感器

    Figure  5.  AE acquisition system and sensors

    图  6  加载路径

    Figure  6.  Loading path

    图  7  细中晶粒花岗岩试件(A1)的破坏过程

    Figure  7.  Failure process of the fine to medium-grained granite specimen (A1)

    图  8  中粗晶粒花岗岩试件(B1)的破坏过程

    Figure  8.  Failure process of the medium to coarse-grained granite specimen (B1)

    图  9  细中晶粒花岗岩试样(A1)最终破坏结果

    Figure  9.  Failure results of the fine to medium-grained granite specimen (A1)

    图  10  中粗晶粒花岗岩试样(B1)最终破坏结果

    Figure  10.  Failure results of the medium to coarse-grained granite specimen (B1)

    图  11  竖向应力、声发射撞击以及累计撞击随时间的变化

    Figure  11.  Change of vertical stress, acoustic emission (AE) hit and accumulative AE hit with time

    图  12  试验过程中两种具有不同晶粒尺寸花岗岩的声发射主频分布

    Figure  12.  Acoustic emission dominant-frequencies of two granites with different particle sizes during the test

    图  13  碎屑粒径分布(单位:mm)

    Figure  13.  Particle size distribution of fragments (unit: mm)

    图  14  粗粒径碎块(单位:mm)

    Figure  14.  Coarse-grained fragments (unit: mm)

    图  15  各等级碎屑的质量占比

    Figure  15.  Mass fractions of fragments with different particle sizes

    表  1  花岗岩基本物理、力学参数与矿物成分

    Table  1.   Basic physical and mechanical parameters and mineral composition

    属地晶粒密度/
    (kg·m−3)
    单轴强度/
    MPa
    弹性模量/
    GPa
    纵波速度/
    (km·s−1)
    矿物成分晶粒直径/
    mm
    非均匀性
    广东肇庆细中2 68713532.24.539%斜长石
    28%石英
    18%钾长石
    7%黑云母
    3%角闪石
    5%其他
    0.6~5.0
    广西梧州中粗2 68011030.65.354%钾长石
    30%石英
    10%斜长石
    4%黑云母
    2%其他
    2~22
    下载: 导出CSV

    表  2  加载过程中细中晶粒花岗岩的特征应力

    Table  2.   Characteristic stresses in the fine to medium-grained granite specimen during loading

    特征应力时间/sσZ/MPaσθ/MPaσθθmax
    起裂应力σci1 547.64 74.00212.000.55
    明显颗粒弹射2 301.12113.72331.160.86
    损伤应力σcd2 563.56127.50372.500.96
    明显板裂化2 650.32132.08386.241.00
    下载: 导出CSV

    表  3  加载过程中中粗晶粒花岗岩特征应力

    Table  3.   Characteristic stresses of the medium to coarse-grained granite specimen during loading

    特征应力时间/s竖向应力σZ/MPaσθ/MPaσθ/σθmax
    起裂应力σci1 145.52 58.00164.000.46
    明显弹射1 838.16 72.76208.280.59
    损伤应力σcd2 241.36113.00329.000.93
    明显岩爆2 385.72121.01353.031.00
    下载: 导出CSV
  • [1] 何满潮, 赵菲, 杜帅, 等. 不同卸载速率下岩爆破坏特征试验分析 [J]. 岩土力学, 2014, 35(10): 2737–2747; 2793. DOI: 10.16285/j.rsm.2014.10.001.

    HE Manchao, ZHAO Fei, DU Shuai, et al. Rockburst characteristics based on experimental tests under different unloading rates [J]. Rock and Soil Mechanics, 2014, 35(10): 2737–2747; 2793. DOI: 10.16285/j.rsm.2014.10.001.
    [2] ZHAO X G, WANG J, CAI M, et al. Influence of unloading rate on the strainburst characteristics of Beishan granite under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 467–483. DOI: 10.1007/s00603-013-0443-2.
    [3] 苏国韶, 胡李华, 冯夏庭, 等. 低频周期扰动荷载与静载联合作用下岩爆过程的真三轴试验研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1309–1322. DOI: 10.13722/j.cnki.jrme.2015.1249.

    SU Guoshao, HU Lihua, FENG Xiating, et al. True triaxial experimental study of rockburst process under low frequency cyclic disturbance load combined with static load [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1309–1322. DOI: 10.13722/j.cnki.jrme.2015.1249.
    [4] 朱万成, 左宇军, 尚世明, 等. 动态扰动触发深部巷道发生失稳破裂的数值模拟 [J]. 岩石力学与工程学报, 2007, 26(5): 915–921. DOI: 10.3321/j.issn:1000-6915.2007.05.007.

    ZHU Wancheng, ZUO Yujun, SHANG Shiming, et al. Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 915–921. DOI: 10.3321/j.issn:1000-6915.2007.05.007.
    [5] 宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1179–1190.

    GONG Fengqiang, LI Xibing, LIU Xiling. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1179–1190.
    [6] 苏国韶, 陈智勇, 蒋剑青, 等. 不同加载速率下岩爆碎块耗能特征试验研究 [J]. 岩土工程学报, 2016, 38(8): 1481–1489. DOI: 10.11779/CJGE201608016.

    SU Guoshao, CHEN Zhiyong, JIANG Jianqing, et al. Experimental study on energy dissipating characteristics of rockburst fragments under different loading rates [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1481–1489. DOI: 10.11779/CJGE201608016.
    [7] SU Guoshao, JIANG Jianqing, ZHAI Shaobin, et al. Influence of tunnel axis stress on strainburst: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1551–1567. DOI: 10.1007/s00603-017-1181-7.
    [8] SU Guoshao, ZHAI Shaobin, JIANG Jianqing, et al. Influence of radial stress gradient on strainbursts: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659–2676. DOI: 10.1007/s00603-017-1266-3.
    [9] 张艳博, 徐东强. 岩爆在不同岩石中的模拟实验 [J]. 河北理工学院学报, 2002, 24(4): 8–11. DOI: 10.3969/j.issn.1674-0262.2002.04.002.

    ZHANG Yanbo, XU Dongqiang. The analysis of the experiment of rock burst on different rocks [J]. Journal of Hebei Institute of Technology, 2002, 24(4): 8–11. DOI: 10.3969/j.issn.1674-0262.2002.04.002.
    [10] 赵康, 赵红宇, 贾群燕. 岩爆岩石断裂的微观结构形貌分析及岩爆机理 [J]. 爆炸与冲击, 2015, 35(6): 913–918. DOI: 10.11883/1001-1455(2015)06-0913-06.

    ZHAO Kang, ZHAO Hongyu, JIA Qunyan. An analysis of rockburst fracture micromorphology and study of its mechanism [J]. Explosion and Shock Waves, 2015, 35(6): 913–918. DOI: 10.11883/1001-1455(2015)06-0913-06.
    [11] 楼沩涛. 干燥和水饱和花岗岩的动态断裂特性 [J]. 爆炸与冲击, 1994, 14(3): 249–254.

    LOU Weitao. Dynamic fracture behaviour of dry and waterlogged granites [J]. Explosion and Shock Waves, 1994, 14(3): 249–254.
    [12] 冯夏庭, 陈炳瑞, 张传庆. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013: 159–167.
    [13] 赵红亮, 周又和. 深埋地下洞室断裂型岩爆机理的数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 343–349. DOI: 10.11883/1001-1455-(2015)03-0343-07.

    ZHAO Hongliang, ZHOU Youhe. Numerical simulation on mechanism of fractured rock burst in deep underground tunnels [J]. Explosion and Shock Waves, 2015, 35(3): 343–349. DOI: 10.11883/1001-1455-(2015)03-0343-07.
    [14] 周辉, 孟凡震, 张传庆, 等. 深埋硬岩隧洞岩爆的结构面作用机制分析 [J]. 岩石力学与工程学报, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008.

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Effect of structural plane on rockburst in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 720–727. DOI: 10.13722/j.cnki.jrme.2015.04.008.
    [15] LAN H X, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading [J]. Journal of Geophysical Research Atmospheres, 2010, 115(B1): B01202. DOI: 10.1029/2009jb006496.
    [16] WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(5): 561–575. DOI: 10.1016/0148-9062(70)90007-0.
    [17] TANG C A, Kaiser P K. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure: Part I: fundamentals [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 113–121. DOI: 10.1016/S0148-9062(97)00009-0.
    [18] 张翀, 舒赣平. 颗粒形状对颗粒流模拟双轴压缩试验的影响研究 [J]. 岩土工程学报, 2009, 31(8): 1281–1286. DOI: 10.3321/j.issn:1000-4548.2009.08.020.

    ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1281–1286. DOI: 10.3321/j.issn:1000-4548.2009.08.020.
    [19] 黄润秋, 王贤能. 岩石结构特征对岩爆的影响研究 [J]. 地质灾害与环境保护, 1997, 7(2): 15–20.

    HUANG Runqiu, WANG Xianneng. Influence of the structure character of rock on rockburst intensity [J]. Journal of Geological Hazards and Environment Preservation, 1997, 7(2): 15–20.
    [20] 高秉璋, 洪大卫, 方宗斌. 花岗岩类区1∶5万区域地质填图方法指南[M]. 武汉: 中国地质大学出版社, 1991: 16–17.
    [21] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆 [J]. 岩石力学与工程学报, 2012, 31(3): 561–569. DOI: 10.3969/j.issn.1000-6915.2012.03.014.

    CHEN Bingrui, FENG Xiating, MING Huajun, et al. Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561–569. DOI: 10.3969/j.issn.1000-6915.2012.03.014.
    [22] HU Xiaochuan, SU Guoshao, CHEN Guanyan, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 783–802. DOI: 10.1007/s00603-018-1613-z.
    [23] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550–564. DOI: 10.1016/j.ijrmms.2006.09.013.
    [24] CHANG S H, LEE C I. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(7): 1069–1086. DOI: 10.1016/j.ijrmms.2004.04.006.
    [25] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.

    XU Jinyu, LIU Shi. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.
    [26] PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054–1073. DOI: 10.1002/2016JB013469.
    [27] DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785–812. DOI: 10.1016/j.ijrmms.2004.02.003.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  4688
  • HTML全文浏览量:  1442
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-06-11
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回