高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应

龚相超 钟冬望 司剑峰 何理

龚相超, 钟冬望, 司剑峰, 何理. 高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应[J]. 爆炸与冲击, 2020, 40(2): 022202. doi: 10.11883/bzycj-2018-0443
引用本文: 龚相超, 钟冬望, 司剑峰, 何理. 高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应[J]. 爆炸与冲击, 2020, 40(2): 022202. doi: 10.11883/bzycj-2018-0443
GONG Xiangchao, ZHONG Dongwang, SI Jianfeng, HE Li. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves[J]. Explosion And Shock Waves, 2020, 40(2): 022202. doi: 10.11883/bzycj-2018-0443
Citation: GONG Xiangchao, ZHONG Dongwang, SI Jianfeng, HE Li. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves[J]. Explosion And Shock Waves, 2020, 40(2): 022202. doi: 10.11883/bzycj-2018-0443

高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应

doi: 10.11883/bzycj-2018-0443
基金项目: 国家自然科学基金(51574184);三峡库区地质灾害教育部重点实验室开放研究基金(2017KDZ02)
详细信息
    作者简介:

    龚相超(1974- ),男,博士研究生,副教授,gxc741@163.com

    通讯作者:

    钟冬望(1963- ),男,博士,教授,zhongdw123@wust.edu.cn

  • 中图分类号: O382; TD235.1

Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves

  • 摘要: 设计和实施了系列爆炸波作用下钢管的动态响应实验,获得了管道应变、振动速度和加速度及地表振动速度的时间历程。分析实验数据可知:在爆炸波近中场,峰值应变大小同管土相对刚度因数负相关,并随比例距离呈幂函数形式衰减,且在爆炸波不同分区衰减指数不同;地表峰值粒子速度、各管的峰值振动速度和测点峰值应变之间具有良好的线性关系。对各测试量做FFT (Fast Fourier Transformation)频谱分析得:振动信号主要集中在低频段,质心频率在10~60 Hz范围内,频谱同天然地震波谱有明显差异,动应变谱质心频率随药量增加亦呈幂函数形式衰减;考虑了爆腔因素以后,管道和地表振速频谱的质心频率和比例距离取对数后具有线性衰减关系。实验所得数据可应用于相似条件下管道的抗震计算,一些结论可作为深入研究爆炸波作用下埋地管道冲击振动机理的依据。
  • 图  1  埋设管道照片

    Figure  1.  The buried pipe

    图  2  管道和爆源位置

    Figure  2.  Location of pipes and explosive source

    图  3  管道S3应变片的位置

    Figure  3.  Location of strain gauges on pipe S3

    图  4  不同测点的动应变波形对比

    Figure  4.  Comparison of dynamic strain waveforms at different measured points

    图  5  S333应变衰减曲线(R=2.7 m,H=1.5 m)

    Figure  5.  Strain decay curves of S333 (R=2.7 m, H=1.5 m)

    图  6  S233应变衰减曲线(R=2.7 m,H=1.0 m)

    Figure  6.  Decay curves of S332 strain (R=2.7 m, H=1.0 m)

    图  7  S331Z最大拉和压应变(H=1.5 m)

    Figure  7.  The maximum tension and compression strains of S331Z (H=1.5 m)

    图  8  S331Z峰值拉应变衰减曲线

    Figure  8.  Decay curve of maximum tension strain for S331Z

    图  9  S332Z和S332H最大应变

    Figure  9.  Maximum strains of S332Z and S332H

    图  10  动应变频谱(R=2.7 m, H=1.5 m)

    Figure  10.  Spectra of dynamic strains (R=2.7 m, H=1.5 m)

    图  11  动应变质心变频率衰减曲线(R=2.7 m, H=1.5 m)

    Figure  11.  The decay curves of dynamic strain centroid frequencies (R=2.7 m, H=1.5 m)

    图  12  S3管道振动的峰值粒子速度和地表振动的峰值粒子速度随比例爆距的衰减

    Figure  12.  Attenuation of peak particle velocity with scaled explosion distance for vibrations of S3 pipe and ground

    图  13  S3管道振动的峰值粒子速度(PPVPV)和地表振动的峰值粒子速度(PPVGV)的关系

    Figure  13.  Relations between peak particle velocities of S3 pipe vibrations (PPVPV) and ones of ground vibrations (PPVGV)

    图  14  管道S3振动速度频谱

    Figure  14.  Vibration velocity spectra of pipe S3

    图  15  地表振动速度频谱(Q=100 g)

    Figure  15.  Vibration velocity spectra of ground (Q=100 g)

    图  16  S3管振速质心频率衰减

    Figure  16.  Centroid frequency attenuation of pipe S3 vibration velocity

    图  17  地面振速质心频率衰减

    Figure  17.  Centroid frequency attenuation of ground vibration velocity

    图  18  S3管道的应变和地表振动峰值粒子速度(PPVGV)的关系

    Figure  18.  Relationships between strain of pipe S3 and peak particle velocity of ground vibration (PPVGV)

    图  19  管道S2的加速度频谱(Q=50 g)

    Figure  19.  Acceleration spectra of pipe S2 (Q=50 g)

    表  1  管道几何参数

    Table  1.   Geometrical parameters of pipes

    管道编号D/mmδ/mmL/m
    S11104.244.6
    S21604.704.6
    S33004.404.6
    下载: 导出CSV

    表  2  实验方案

    Table  2.   Experimental schemes

    H/mR/mQ/g
    2.02.25075100125150175200
    2.75075100125150175200
    1.52.25075100125150175200
    2.75075100125150175200
    3.25075100125150175200
    1.02.75075100125150175200
    下载: 导出CSV

    表  3  实验参数

    Table  3.   Experimental parameters

    H/mR/mQ/g$\bar R$/(m·kg−1/3)管道编号
    1.02.7756.402S3
    1.03.21256.4 S3
    下载: 导出CSV

    表  4  校验结果

    Table  4.   Results of check

    测点编号相关系数可信概率测点编号相关系数可信概率
    S323H0.8360.872S332Z0.8550.893
    S311H0.7860.834S341Z0.8970.910
    下载: 导出CSV

    表  5  S3管不同测点的最大峰值应变(R=2.2 m)

    Table  5.   The maximum peak strains at different measured points of pipe S3 (R=2.2 m)

    Q/g最大峰值应变/10−6
    S321HS341ZS323HS323ZS331ZS332HS332ZS333HS333ZS334Z
    50−31.135.1−50.7−31.7104.3 53.8 −66.3 48.344.5−58.5
    75−32.139.4−51.8−35.8103.9 62.7 −75.4 43.850.4−65.9
    100−30.752.9−63.7−35.9 97.3 61.1 −77.8 45.252.9−61.6
    125−26.444.3−45.2−33.3122.5 74.5 −81.2 60.354.3−58.2
    150−42.760.7−98.1 56.5174.9 90.6−117.7 69.676.4−78.1
    175−78.572.2−71.7−64.3187.8 93.6−118.6 79.979.2−79.3
    200−53.986.3−89.2−84.1228.9103.4−131.3100.590.4−87.4
     注:压应变按绝对值最大给出,下同。
    下载: 导出CSV

    表  6  S3管不同测点的最大峰值应变(R=2.7 m)

    Table  6.   The maximum peak strains at different measured points of pipe S3 (R=2.7 m)

    Q/g最大峰值应变/10−6
    S321HS341ZS323HS323ZS331ZS332HS332ZS333HS333ZS334Z
    50−16.5 7.2 −33.7−14.4−26.1 44.514.621.0 7.6−29.8
    75−22.410.4−52.0−20.2−34.9 61.119.428.111.2−28.2
    100−28.214.9 −67.2−28.3−49.4 80.728.836.217.9−31.3
    125−30.517.6 −69.6−30.9−58.3 88.733.639.123.9−42.0
    150−36.521.0−91.0−37.1−71.3102.942.948.230.1−48.4
    175−38.233.2−103.2−48.5−94.1121.352.360.134.5−57.0
    200−42.128.9−103.7−44.6−85.7118.949.354.534.3−48.5
    下载: 导出CSV

    表  7  S3管不同测点的最大峰值应变(R=3.2 m)

    Table  7.   The maximum peak strains at different measured points of pipe S3 (R=3.2 m)

    Q/g最大峰值应变/10−6
    S321HS341ZS323HS323ZS331ZS332HS332ZS333HS333ZS334Z
    50−30.218.6−36.9−22.1−49.139.3−26.927.6−15.534.4
    75−16.217.4−32.0−22.3−45.931.8−25.526.2−16.832.8
    100−18.622.7−36.6−26.8−52.835.4−32.926.5−19.633.3
    125−19.122.5−38.9−32.7−34.145.3−30.731.1−20.937.9
    150−19.324.7−41.5−37.5−61.152.3−35.133.0−22.138.2
    175−23.028.0−43.0−36.6−71.853.0−41.334.8−28.640.9
    200−25.929.5−47.7−38.7−90.858.1−43.038.7−38.142.5
    下载: 导出CSV

    表  8  S3管道振动的峰值粒子速度和地表振动的峰值粒子速度(R=2.7 m, H=2.0 m)

    Table  8.   Peak particle velocities of S3 pipe and ground vibrations (R=2.7 m, H=2.0 m)

    Q/g峰值粒子速度/(cm∙s−1)比值/%Q/g峰值粒子速度/(cm∙s−1)比值%
    S3管道振动地表振动S3管道振动地表振动
    504.313.831150 9.425.137
    753.711.43217512.130.639
    1004.915.03320014.535.241
    1255.213.738
    下载: 导出CSV

    表  9  管道S3和地面振动速度质心频率(R=2.7 m, H=2.0 m)

    Table  9.   Centroid frequencies of pipe S3 and ground vibration velocities (R=2.7 m, H=2.0 m)

    Q/gfc/HzQ/gfc/Hz
    管道地表管道地表
    X方向Y方向Z方向X方向Y方向Z方向X方向Y方向Z方向X方向Y方向Z方向
    5024.318.027.518.322.318.315022.626.928.829.716.029.8
    7525.119.725.814.919.616.417520.423.022.732.916.539.9
    10025.422.428.819.118.015.520033.224.526.936.315.745.8
    12526.226.236.828.617.015.2
    下载: 导出CSV

    表  10  S2管道振动的峰值加速度(H=1.5 m, R=2.7 m)

    Table  10.   Peak particle vibration acceleration of pipe S2 (H=1.5 m, R=2.7 m)

    Q/g加速度/(m·s−2)
    X方向Y方向Z方向合成
    MaxMinMaxMinMaxMin
    504.7−11.13.7 0.36.7−3.713.5
    756.7−12.94.0 0.08.1−3.515.8
    1004.1−10.42.2−1.27.7−2.513.2
    1254.7−16.11.5−2.98.4−7.017.8
    1503.1−15.50.9−3.16.7−6.517.1
    1751.7−14.71.0−3.36.8−7.116.6
    2003.0−18.20.3−4.06.9−7.420.1
    下载: 导出CSV

    表  11  加速度质心频率(H=1.5 m, R=2.7 m)

    Table  11.   Centroid frequencies of acceleration (H=1.5 m, R=2.7 m)

    Q/gfc/Hz
    X方向Y方向Z方向
    5055.940.132.9
    10041.341.933.0
    20041.139.136.8
    下载: 导出CSV

    表  12  S3管加速度、速度和位移峰值(H=2.0 m, R=2.2 m)

    Table  12.   Peak acceleration, peak velocity and peak displacement of S3 (H=2.0 m, R=2.2 m)

    Q/gdmax/mmvmax/(cm·s−1)amax/(m·s−2)$\left( {{v_{{\rm{max}}}} \cdot d_{\max }^{ - 1}} \right)/{\rm{Hz}}$$\left( {{a_{{\rm{max}}}} \cdot v_{\max }^{ - 1}} \right)/{\rm{Hz}}$
    500.99 7.4512.7375.60170.85
    750.82 5.8911.2371.69190.78
    1001.02 7.2115.1770.50210.32
    1251.33 9.3323.5970.40252.82
    1501.5710.1920.5364.92201.37
    1751.8811.8525.3162.91213.55
    2002.5416.6841.9265.58251.26
    下载: 导出CSV
  • [1] 李强, 陈德利, 屈洋. 爆破对输气管道本体影响的监测 [J]. 油气储运, 2015, 34(2): 190–194. DOI: 10.6047/j.issn.1000-8241.2015.02.017.

    LI Q, CHEN D L, QU Y. Monitoring on effects of blasting on gas pipeline body distortion [J]. Oil & Gas Storage and Transportation, 2015, 34(2): 190–194. DOI: 10.6047/j.issn.1000-8241.2015.02.017.
    [2] 程围峰, 梁旭, 王振宇. 隧道爆破施工对邻近输油管道的影响评价 [J]. 石油工程建设, 2011, 37(4): 44–46; 9. DOI: 10.3969/j.issn.1001-2206.2011.04.013.

    CHENG W F, LIANG X, WANG Z Y. Assessment of blasting impact in tunnel excavation on nearby oil pipeline [J]. Petroleum Engineering Construction, 2011, 37(4): 44–46; 9. DOI: 10.3969/j.issn.1001-2206.2011.04.013.
    [3] 张紫剑, 赵昌龙, 张黎明, 等. 埋地管道爆破振动安全允许判据试验探究 [J]. 爆破, 2016, 33(2): 12–16. DOI: 10.3963/j.issn.1001-487X.2016.02.003.

    ZHANG Z J, ZHAO C L, ZHANG L M, et al. Experimental investigation of blasting vibration safety criterion on buried pipeline [J]. Blasting, 2016, 33(2): 12–16. DOI: 10.3963/j.issn.1001-487X.2016.02.003.
    [4] 戴联双, 张海珊, 孟国忠, 等. 在役油气管道周边爆破作业风险分析 [J]. 油气储运, 2012, 31(11): 801–803; 887. DOI: 10.6047/j.issn.1000-8241.2012.11.001.

    DAI L S, ZHANG H S, MENG G Z, et al. Risk analysis of blasting operations around in-service oil and gas pipelines [J]. Oil & Gas Storage and Transportation, 2012, 31(11): 801–803; 887. DOI: 10.6047/j.issn.1000-8241.2012.11.001.
    [5] 王振洪, 侯雄飞, 边明, 等. 爆破对天然气长输管道振动影响的安全判据 [J]. 油气储运, 2016, 35(8): 813–818. DOI: 10.60 47/j.issn.1000-8241.2016.08.003.

    WANG Z H, HOU X F, BIAN M, et al. Safety criterion for impacts of bursting on long-distance gas pipeline [J]. Oil & Gas Storage and Transportation, 2016, 35(8): 813–818. DOI: 10.60 47/j.issn.1000-8241.2016.08.003.
    [6] SISKIND D E, STAGG M S, WIEGAND J E, et al. Surface mine blasting near pressurized transmission pipelines [R]. Minneapolis, MN: US Department of the Interior Bureau of Mines, 1994: 2−3; 22−23.
    [7] DOWDING C H. Blast vibration monitoring and control [M]. New Jersey: Prentice-Hall, 1985: 167−171.
    [8] ESPARZA E D, WESTINE P S, WENZEL A B. Pipeline response to buried explosive detonations: Vol. 2 [R]. Arlington, USA: American Gas Association, 1981: 146−152.
    [9] KOURETZIS G P, BOUCKOVALAS G D, GANTES C J. Analytical calculation of blast-induced strains to buried pipelines [J]. International Journal of Impact Engineering, 2007, 34(10): 1683–1704. DOI: 10.1016/j.ijimpeng.2006.08.008.
    [10] ABEDI A S, HATAF N, GHAHRAMANI A. Analytical solution of the dynamic response of buried pipelines under blast wave [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 301–306. DOI: 10.1016/j.ijrmms.2016.07.014.
    [11] 钟冬望, 龚相超, 涂圣武, 等. 高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应 [J]. 爆炸与冲击, 2019, 39(3): 033102. DOI: 10.11883/bzycj-2017-0334.

    ZHONG D W, GONG X C, TU S W, et al. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave [J]. Explosion and Shock Waves, 2019, 39(3): 033102. DOI: 10.11883/bzycj-2017-0334.
    [12] 冯双, 马郧, 徐光黎. 武汉地区基坑一般黏性土的力学特性与其物理指标间的相关性研究 [J]. 安全与环境工程, 2016, 23(5): 149–154. DOI: 10.13578/j.cnki.issn.1671-1556.2016.05.025.

    FENG S, MA Y, XU G L. Correlation between mechanical properties and physical indicators of general cohesive soil in foundation pits in Wuhan area [J]. Safety and Environmental Engineering, 2016, 23(5): 149–154. DOI: 10.13578/j.cnki.issn.1671-1556.2016.05.025.
    [13] 库特乌佐夫. 爆破工程师手册 [M]. 刘清泉, 译. 北京: 煤炭工业出版社, 1992: 137–138
    [14] 卢文波, 张乐, 周俊汝, 等. 爆破振动频率衰减机制和衰减规律的理论分析 [J]. 爆破, 2013, 30(2): 1–6; 11. DOI: 10.3963/j.issn.1001-487X.2013.02.001.

    LU W B, ZHANG L, ZHOU J R, et al. Theoretical analysis on decay mechanism and law of blasting vibration frequency [J]. Blasting, 2013, 30(2): 1–6; 11. DOI: 10.3963/j.issn.1001-487X.2013.02.001.
    [15] 陈勇, 杨庆华. 埋地管道在地震波作用下的变形分析 [J]. 世界地震工程, 2015, 31(4): 275–279.

    CHEN Y, YANG Q H. Deformation analysis of buried pipelines under seismic waves [J]. World Earthquake Engineering, 2015, 31(4): 275–279.
  • 加载中
图(19) / 表(12)
计量
  • 文章访问数:  4884
  • HTML全文浏览量:  1549
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2019-04-02
  • 网络出版日期:  2020-01-25
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回