爆炸荷载下基于细观建模的素/钢筋混凝土板破坏模式

孙加超 陈小伟 邓勇军 姚勇

孙加超, 陈小伟, 邓勇军, 姚勇. 爆炸荷载下基于细观建模的素/钢筋混凝土板破坏模式[J]. 爆炸与冲击, 2019, 39(11): 113101. doi: 10.11883/bzycj-2018-0506
引用本文: 孙加超, 陈小伟, 邓勇军, 姚勇. 爆炸荷载下基于细观建模的素/钢筋混凝土板破坏模式[J]. 爆炸与冲击, 2019, 39(11): 113101. doi: 10.11883/bzycj-2018-0506
SUN Jiachao, CHEN Xiaowei, DENG Yongjun, YAO Yong. Dynamic response of mesoscopic plain/reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2019, 39(11): 113101. doi: 10.11883/bzycj-2018-0506
Citation: SUN Jiachao, CHEN Xiaowei, DENG Yongjun, YAO Yong. Dynamic response of mesoscopic plain/reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2019, 39(11): 113101. doi: 10.11883/bzycj-2018-0506

爆炸荷载下基于细观建模的素/钢筋混凝土板破坏模式

doi: 10.11883/bzycj-2018-0506
基金项目: 四川省科技厅应用基础项目(2018JY0496);四川省科技创新苗子工程项目(2018012);西南科技大学研究生创新基金(17ycx111)
详细信息
    作者简介:

    孙加超(1993- ),男,硕士研究生,sunjiachao1@qq.com

    通讯作者:

    陈小伟(1967- ),男,博士,研究员,博士生导师,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O383

Dynamic response of mesoscopic plain/reinforced concrete slabs under blast loading

  • 摘要: 为了获得爆炸荷载下细观结构对素/钢筋混凝土板的影响,采用随机骨料投放建立了素/钢筋混凝土板细观模型。利用LS-DYNA对基于细观建模的钢筋混凝土板进行爆炸荷载作用下的数值模拟,通过与实验以及均质建模方法进行比较,验证了细观建模方法的准确性。进而研究了基于细观建模的素/钢筋混凝土板在不同爆炸荷载下的结构响应,获得了素/钢筋混凝土板的响应过程和破坏模式。结果表明:在低药量(1、2 kg)爆炸荷载下,细观结构对素/钢筋混凝土板的影响较小,其破坏模式以纵横塑性铰线破坏为主,药量越大,铰线越多;在高药量(5、10和15 kg)爆炸荷载下,细观结构对素/钢筋混凝土板的影响较大,与均质模型相比存在较大差异,细观素/钢筋混凝土板以爆坑为中心,产生环向与径向裂纹,药量越大,圆坑越大,裂纹越多,板局部破坏越严重。
  • 图  1  爆炸模型

    Figure  1.  Explosion model

    图  2  钢筋布置

    Figure  2.  Reinforcement arrangement of the slabs

    图  3  有限元模型图

    Figure  3.  Finite element model diagram

    图  4  爆炸试验

    Figure  4.  Explosion test

    图  5  对比结果

    Figure  5.  Comparison results

    图  6  钢筋混凝土板迎爆面与长边中心剖面等效应力图

    Figure  6.  Equivalent stress diagrams of front and long side central section of reinforced concrete slab

    图  7  钢筋混凝土板跨中位移

    Figure  7.  Mid span displacement of reinforced concrete slab

    图  8  2 kg TNT素凝土板迎爆面与长边中心剖面有效应力图

    Figure  8.  Equivalent stress diagrams of front and long side center section of homogeneous plain concrete slab under 2 kg TNT

    图  9  2 kg TNT素凝土板迎爆面与长边方向中心剖面塑性应变图

    Figure  9.  Plastic strain diagrams of front and long side center section of homogeneous plain concrete slab under 2 kg TNT

    图  10  2 kg TNT钢筋混凝土板迎爆面与长边方向中心剖面有效应力图

    Figure  10.  Equivalent stress diagrams of front and long side center section of mesoscopic reinforced concrete slab under 2 kg TNT

    图  11  跨中位移时程曲线

    Figure  11.  Time history curve of mid span displacement

    图  12  较大应力区边界距离时程曲线

    Figure  12.  Time history curve of large stress zone boundary distance

    图  13  边界距离示例

    Figure  13.  An example of boundary distance

    图  14  2 kg TNT钢筋凝土板迎爆面与长边方向中心剖面塑性应变图

    Figure  14.  Plastic strain diagrams of front and long side center section of mesoscopic reinforced concrete slab under 2 kg TNT

    图  15  爆炸荷载下素混凝土板塑性应变图

    Figure  15.  Plastic strain diagrams of plain concrete slab under explosive loading

    图  16  爆炸荷载下钢筋混凝土板塑性应变图

    Figure  16.  Plastic strain diagrams of reinforced concrete slab under explosive loading

    表  1  工况表

    Table  1.   Working condition details

    模型TNT 药量 W/kg爆距 R/m比例距离 Z/(m·kg−1/3
    素/钢筋混凝土 10.50.500
    20.50.397
    50.50.292
    100.50.232
    150.50.203
    下载: 导出CSV

    表  2  混凝土及其细观组分的材料参数与失效判据

    Table  2.   Material parameters and failure criteria of concrete and its meso-components

    模型材料ρi/(kg·m−3νifti/MPafci/MPaεimaxεiminRsUc
    均质混凝土2 4400.20 4.8 480.008−0.0233.94×102145
    细观砂浆2 2800.22 5.7 400.011−0.040
    骨料2 6600.1616.01600.010−0.020
    ITZ12 0000.16 3.0 300.005−0.015
    ITZ22 0000.16 2.5 250.006−0.018
     注:ρi为密度,νi为泊松比,fti为抗拉强度,fci为抗压强度,εimax为最大主应变,εimin为最小主应变,Rs为长度单位转换因子,Uc为应力单位换算系数。
    下载: 导出CSV

    表  3  钢筋材料参数

    Table  3.   Steel bar parameters

    参数ρs/(kg·m−3)E/GPaνsσy/MPaEt/GPaC/s−1PsFs
    钢筋7 8502100.284404.74550.12
     注:ρs为密度,E为弹性模量,νs为泊松比,σy为屈服强度,Et为剪切模量,C为应变率参数,Ps为应变率参数,Fs为失效应变。
    下载: 导出CSV
  • [1] 张晓伟, 汪庆桃, 张庆明, 等. 爆炸冲击波作用下混凝土板的载荷等效方法 [J]. 兵工学报, 2013, 34(3): 263–268.

    ZHANG Xiaowei, WANG Qingtao, ZHANG Qingming, et al. Equivalence method for the dynamic loading of concrete slab subjected to explosion [J]. Acta Armamentarii, 2013, 34(3): 263–268.
    [2] 汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析 [J]. 兵工学报, 2010(S1): 102–106.

    WANG Wei, ZHANG Duo, LU Fangyun, et al. Analysis for blast resistance and damage mode of reinforced concrete slab subjected to explosive load [J]. Acta Armamentarii, 2010(S1): 102–106.
    [3] WANG W, ZHANG D, LU F, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading [J]. International Journal of Impact Engineering, 2012, 49(2): 158–164.
    [4] STOLZA A, FISCHERA K, ROLLER C. Dynamic bearing capacity of ductile concrete plates under blast loading [J]. International Journal of Impact Engineering, 2014, 69(7): 25–38.
    [5] 陈万祥, 卢红标, 候小伟, 等. 高强钢筋加强混凝土板抗爆性能试验研究 [J]. 振动与冲击, 2015, 34(10): 135–141.

    CHEN Wanxiang, LU Hongbiao, HOU Xiaowei, et al. Tests for anti-blast performance of concrete slabs with high-strength reinforcements under blast loading [J]. Journal of Vibration and Shock, 2015, 34(10): 135–141.
    [6] ALENGARAM U J, MOHOTTIGE N H W, WU C, et al. Response of oil palm shell concrete slabs subjected to quasi-static and blast loads [J]. Construction and Building Materials, 2016, 116: 391–402.
    [7] LV T H, CHEN X W, CHEN G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen [J]. Construction and Building Materials, 2018, 160: 744–764.
    [8] SCHWER L E, MALVAR L J. Simplified concrete modeling with *MAT_CONCRETE_DAMAGE_REL3 [C] // JRI LS-Dyna User Week, Nagoya, Japan, 2005: 49-60.
    [9] GOBLE C F, COHEN M D. Influence of aggregate surface area on mechanical properties of mortar [J]. ACI Materials Journal, 1999, 96(6): 657–662.
    [10] GOPALARATNAM. Softening response of plain concrete in direct tension [J]. ACI Materials Journal, 1985, 82(3): 310–323.
    [11] 唐春安, 朱万成. 混凝土损伤与断裂[M].北京: 科学出版社, 2003.

    TANG Chunan, ZHU Wancheng. Concrete damage and fracture [M]. Beijing: Science Press, 2003.
    [12] CLARK L A. CEB-FIP Model Code 1990 [J]. Programs Usenix Unix Supplementary Documents, 2008, 40(95): 233–235.
    [13] 龚顺风, 金伟良, 何勇. 内部爆炸荷载作用下钢筋混凝土板的动力响应研究 [J]. 振动工程学报, 2008, 21(5): 516–520. DOI: 10.3969/j.issn.1004-4523.2008.05.016.

    GONG Shunfeng, JIN Weiliang, HE Yong. Dynamic response of reinforced concrete slab subjected to internal blast loading [J]. Journal of Vibration Engineering, 2008, 21(5): 516–520. DOI: 10.3969/j.issn.1004-4523.2008.05.016.
    [14] 龚顺风, 金伟良. 内部爆炸荷载作用下钢筋混凝土板碎片抛射速度的预测 [J]. 工程力学, 2009, 26(9): 225–230.

    GONG Shunfeng, JIN Weiliang. Prediction of debris launch velocity of reinforced concrete slab subjected to internal blast loading [J]. Engineering Mechanics, 2009, 26(9): 225–230.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  6455
  • HTML全文浏览量:  1665
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-03-07
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回