阻塞比对竖直管道中铝粉爆炸特性的影响研究

朱小超 郑立刚 于水军 王亚磊 李刚 杜德朋 窦增果

朱小超, 郑立刚, 于水军, 王亚磊, 李刚, 杜德朋, 窦增果. 阻塞比对竖直管道中铝粉爆炸特性的影响研究[J]. 爆炸与冲击, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006
引用本文: 朱小超, 郑立刚, 于水军, 王亚磊, 李刚, 杜德朋, 窦增果. 阻塞比对竖直管道中铝粉爆炸特性的影响研究[J]. 爆炸与冲击, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006
ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006
Citation: ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006

阻塞比对竖直管道中铝粉爆炸特性的影响研究

doi: 10.11883/bzycj-2019-0006
基金项目: 国家自然科学基金(51674104,51874120);中国博士后科学基金(2013M540570);河南理工大学创新型科研团队(T2018-2)
详细信息
    作者简介:

    朱小超(1992- ),男,硕士研究生,1039137325@qq.com

    通讯作者:

    郑立刚(1979- ),男,博士,教授,zhengligang97@163.com

  • 中图分类号: O389; X945

Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct

  • 摘要: 在自行搭建的竖直透明管道喷粉平台中开展了铝粉尘爆炸实验研究,通过对铝粉爆炸火焰锋面演化及压力变化等特征进行分析,探究泄爆口阻塞比对铝粉爆炸特性的影响规律。结果表明:阻塞比对较小粒径铝粉爆炸火焰锋面结构影响较大。管道中爆炸超压呈双峰形式;对于较小粒径铝粉,超压双峰主导地位在拐点φ=0.4(φ为阻塞比)处发生反转,且第一波峰值与第二波峰值通过转折点时变化趋势不同,第一波峰值随阻塞比增加而升高,并以φ=0.4为拐点,斜率大大提升,而第二波峰值随阻塞比的增加先升后降,且在φ=0.4时达到最大;铝粉粒径较大时,波峰值变化趋势与小粒径类似,拐点后移至φ=0.6。最大(主导)超压峰值随阻塞比增加而增加;小粒径粉尘更容易产生危险性爆炸超压。
  • 图  1  实验系统图

    Figure  1.  Illustration of experimental setup

    图  2  实验铝粉表征测试结果

    Figure  2.  Test results of aluminum powder surface characteristics

    图  3  D50=17 μm铝粉在不同阻塞比条件下火焰前锋结构

    Figure  3.  Flame front structure of D50=17 μm aluminum powder at different blocking ratios

    图  4  D50=48 μm铝粉在不同阻塞比条件下火焰前锋结构

    Figure  4.  Flame front structure of D50=48 μm aluminum powder at different blocking ratios

    图  5  在不同阻塞比条件下火焰锋面发展对比图

    Figure  5.  Comparison of the development of flame fronts at different blocking ratios

    图  6  锋面位置与压力波形对照分析图

    Figure  6.  Contrast analysis of frontal position and pressure waveform

    图  7  铝颗粒燃烧顺序机制图

    Figure  7.  Combustion sequence of aluminum particles

    图  8  各阻塞比条件下超压波形图

    Figure  8.  Overpressure waveform at different blocking ratios

    图  9  D50=17.1 μm和D50=48.3 μm铝粉在各阻塞比条件下波峰值比较

    Figure  9.  Comparison of peak values of D50=17.1 μm and D50=48.3 μm aluminum powder at different blocking ratios

    图  10  阻塞比对反应进行影响机制图

    Figure  10.  Illustration of block ratio effect’s mechanism

    图  11  最大超压柱形分布图和最大超压上升率趋势图

    Figure  11.  Maximum overpressure and rate of maximum overpressure rise

  • [1] LI G, YANG H X, YUAN C M, et al. A catastrophic aluminium-alloy dust explosion in China [J]. Journal of Loss Prevention in the Process Industries, 2015, 39: 121–130.
    [2] 安全监管总局. 安全监管总局通报2016年工贸行业粉尘防爆专项整治工作情况 [J]. 中国应急管理, 2017(3): 43–45.
    [3] 李庆钊, 王可, 梅晓凝, 等. 微米级铝粉的爆炸特性及其反应机理研究 [J]. 工程热物理学报, 2017, 38(1): 219–225.

    LI Qingzhao, WANG Ke, MEI Xiaoning, et al. Investigation on explosion characteristics and reaction mechanism of micro-aluminum powder [J]. Journal of Engineering Theermophysics, 2017, 38(1): 219–225.
    [4] LI Q, WANG K, ZHENG Y, et al. Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel [J]. Powder Technology, 2016, 301: 1299–1308. DOI: 10.1016/j.powtec.2016.08.012.
    [5] 沈世磊, 张奇, 马秋菊, 等. 湍流对铝粉爆炸特性的影响 [J]. 兵工学报, 2016, 37(3): 455–461. DOI: 10.3969/j.issn.1000-1093.2016.03.010.

    SHEN Shilei, ZHANG Qi, MA Qiujun, et al. Effect of turbulence on explosion characteristics of aluminium dust/air [J]. Acta Armamentarii, 2016, 37(3): 455–461. DOI: 10.3969/j.issn.1000-1093.2016.03.010.
    [6] LIU X, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. DOI: 10.1016/j.jhazmat.2015.07.068.
    [7] 谭汝媚, 张奇, 张博. 点火延迟时间对铝粉爆炸特性参数的影响 [J]. 爆炸与冲击, 2014, 34(1): 17–22. DOI: 10.11883/1001-1455(2014)01-0017-06.

    TAN Rumei, ZHANG Qi, ZHANG Bo. Effect of ignition delay time on characteristic parameters of aluminum dust explosion [J]. Explosion and Shock Waves, 2014, 34(1): 17–22. DOI: 10.11883/1001-1455(2014)01-0017-06.
    [8] 谭汝媚, 张奇. 环境湿度对铝粉爆炸特性参数影响的实验研究 [J]. 兵工学报, 2013, 34(8): 965–969.

    TAN Rumei, ZHANG Qi. Experimental research of the effect of ambient humidity on the explosion characteristic parameters of aluminum powder [J]. Acta Armamentarii, 2013, 34(8): 965–969.
    [9] 张博, 张奇, 谭汝媚. 喷粉压力及点火延迟时间对粉尘爆炸参数的影响 [J]. 高压物理学报, 2014, 28(2): 183–190. DOI: 10.11858/gywlxb.2014.02.008.

    ZHANG Bo, ZHANG Qi, TAN Rumei. Influence of dispersion pressure and ignition delay time on the dust explosion parameters [J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 183–190. DOI: 10.11858/gywlxb.2014.02.008.
    [10] SUN J, DOBASHI R, HIRANO T. Structure of flames propagating through aluminum particles cloud and combustion process of particles [J]. journal of loss prevention in the Process Industries, 2006, 19: 769–773. DOI: 10.1016/j.jlp.2006.01.002.
    [11] 胡东涛, 陈先锋, 陈曦. 不同粒径铝粉火焰传播特性试验研究 [J]. 中国安全科学学报, 2016, 26(8): 41–45.

    HU Dongtao, CHEN Xianfeng, CHEN Xi. Experimental study on aluminum dust flame propagation characteristics [J]. China Safety Science Journal, 2016, 26(8): 41–45.
    [12] 任瑞娥, 谭迎新. 浓度对铝粉爆炸特性的影响研究 [J]. 消防科学与技术, 2014(4): 375–377. DOI: 10.3969/j.issn.1009-0029.2014.04.005.

    REN Ruie, TAN Yingxin. Study on the effect of concentration on the characteristcs of aluminum dust explosion [J]. Fire Science and Technology, 2014(4): 375–377. DOI: 10.3969/j.issn.1009-0029.2014.04.005.
    [13] 尉存娟, 谭迎新, 路旭, 等. 点火延迟时间对铝粉爆炸压力的影响研究 [J]. 中北大学学报(自然科学版), 2009, 30(3): 257–260. DOI: 10.3969/j.issn.1673-3193.2009.03.013.

    YU Cunjuan, TAN Yingxin, LU Xu, et al. Effect of the ignition delay time on the explosion pressure of aluminum dust [J]. Journal of North University of China (Natural Science Edition), 2009, 30(3): 257–260. DOI: 10.3969/j.issn.1673-3193.2009.03.013.
    [14] 谭迎新, 霍晓东, 尉存娟. 不同粒度铝粉在水平管道内的爆炸压力测定 [J]. 中国安全科学学报, 2008, 18(12): 80–83. DOI: 10.3969/j.issn.1003-3033.2008.12.013.

    TAN Yingxin, HUO Xiaodong, YU Cunjian. Explosion pressure test of different-sized aluminum powder in horizontal pipeline equipment [J]. China Safety Science Journal, 2008, 18(12): 80–83. DOI: 10.3969/j.issn.1003-3033.2008.12.013.
    [15] YAN X, LI D, YU J. Secondary explosions in relief duct during aluminum dust explosion venting [J]. Procedia Engineering, 2012, 45: 431–434. DOI: 10.1016/j.proeng.2012.08.181.
    [16] 喻健良, 杨少丽, 吕明宇. 金属粉尘燃爆泄放特性研究 [J]. 石油化工设备, 2007(4): 6–10. DOI: 10.3969/j.issn.1000-7466.2007.04.002.

    YU Jianliang, YANG Shaoli, LV Mingyu. Study on the explosion venting characters of metal dusts [J]. Petro-Chenical Equipment, 2007(4): 6–10. DOI: 10.3969/j.issn.1000-7466.2007.04.002.
    [17] ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder [J]. Journal of Hazardous Materials, 2018, 355: 25–33. DOI: 10.1016/j.jhazmat.2018.04.070.
    [18] XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. DOI: 10.1016/j.ijhydene.2013.05.003.
    [19] AIRASH M J, ZANGANEH J, MOGHTADERI B. Flame deflagration in side-on vented detonation tubes: a large scale study [J]. Journal of Hazardous Materials, 2018, 345: 38–47. DOI: 10.1016/j.jhazmat.2017.11.014.
    [20] 陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.

    CHEN Xi, CHEN Xianfeng, ZHANG Hongming, et al. Effect of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
    [21] VOROZHTSOV A B, LERNER M, RODKEVICH N, et al. Oxidation of nano-sized aluminum powders [J]. Thermochimica Acta, 2016(636): 48–56.
    [22] 郑立刚, 苏洋, 李刚, 等. 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响 [J]. 化工学报, 2017, 68(12): 4874–4881.

    ZHENG Ligang, SU Yang, LI Gang, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air [J]. Journal of Chemical Industry and Engineering, 2017, 68(12): 4874–4881.
    [23] ZHENG L G, ZHU X C, WANG Y L, et al. Combined effect of ignition position and equivalence ratio on the characteristics of premixed hydrogen/air deflagrations [J]. International Journal of Hydrogen Energy, 2018, 43(33): 16430–16441. DOI: 10.1016/j.ijhydene.2018.06.189.
    [24] HUANG Y, RISHA G A, YANG V, et al. Effect of particle size on combustion of aluminum particle dust in air [J]. Combustion and Flame, 2008(156): 5–13.
    [25] CORCORAN A L, HOFFMANN V K, DREIZIN E L. Aluminum particle combustion in turbulent flames [J]. Combustion and Flame, 2013, 160(3): 718–724. DOI: 10.1016/j.combustflame.2012.11.008.
    [26] 李亚男. 磷酸二氢铵对金属粉尘的爆炸抑制研究[D]. 太原: 中北大学, 2015: 14.
    [27] HUANG Y, RISHA G A, YANG V, et al. Combustion of bimodal nano/micron-sized aluminum particle dust in air [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2001–2009. DOI: 10.1016/j.proci.2006.08.103.
    [28] 范宝春, 谢波, 张小和, 等. 惰性粉尘抑爆过程的实验研究 [J]. 流体力学实验与测量, 2001, 15(4): 20–25. DOI: 10.3969/j.issn.1672-9897.2001.04.005.

    FAN Baochun, XIE Bo, ZHANG Xiaohe, et al. Experimental research on explosion suppression by inert particles [J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 20–25. DOI: 10.3969/j.issn.1672-9897.2001.04.005.
    [29] JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2018, 361: 273–282.
    [30] CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254: 331–337. DOI: 10.1016/j.powtec.2013.11.028.
    [31] DUFAUD O, TRAORE M, PERRIN L, et al. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere [J]. Journal of Loss Prevention in the Process Industries, 2009, 23(2).
  • 加载中
图(11)
计量
  • 文章访问数:  5195
  • HTML全文浏览量:  1637
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-01-24
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回