尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析

李孝斌 张瑞杰 崔沥巍 张庆利

李孝斌, 张瑞杰, 崔沥巍, 张庆利. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J]. 爆炸与冲击, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090
引用本文: 李孝斌, 张瑞杰, 崔沥巍, 张庆利. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J]. 爆炸与冲击, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090
LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090
Citation: LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090

尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析

doi: 10.11883/bzycj-2019-0090
基金项目: 国家自然科学基金(51774296)
详细信息
    作者简介:

    李孝斌(1980- ),男,博士,副教授,wjxy_lxb@163.com

  • 中图分类号: O381; TD712.71

Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea

  • 摘要: 为建立抑爆过程中,尿素对甲烷宏观抑爆效果与微观抑爆机理之间的联系,利用20 L球型爆炸测试装置开展实验,测量了尿素粉体抑制甲烷爆炸过程中爆炸压力,利用光栅光谱仪采集火焰发射光谱数据;采用光谱分析和数据同步分析方法,分析该抑爆过程中爆炸压力和NO、CN、CHO、HNO、OH等关键自由基或分子的变化,得出甲烷爆炸压力发展过程与相关自由基含量之间的耦合变化关系。研究表明,加入尿素能有效地降低甲烷的爆炸压力,延长甲烷的爆炸感应期;在尿素的作用条件,NO、HNO含量的升高和CN、CHO、OH含量的降低,可以抑制甲烷爆炸;NO、CN、CHO、HNO自由基分子与甲烷爆炸升压过程有较大联系;OH自由基一直存在于甲烷爆炸的整个过程中且含量较高;对以上自由基的干预,可以在相应阶段发挥抑爆作用。
  • 图  1  实验设备示意图

    Figure  1.  Experiment device

    图  2  甲烷爆炸压力与光谱时间分析耦合图

    Figure  2.  Time coupling analysis plot of methane explosion spectra and pressure

    图  3  尿素作用下甲烷爆炸压力与NO耦合变化关系

    Figure  3.  The coupling relationship plots of methane explosion pressure and the content of NO under urea condition

    图  4  尿素作用下甲烷爆炸压力与CN耦合变化关系

    Figure  4.  The coupling relationship plots of methane explosion pressure and the content of CN under urea condition

    图  5  尿素作用下甲烷爆炸压力与CHO耦合变化关系

    Figure  5.  The coupling relationship plots of methane explosion pressure and the content of CHO under urea condition

    图  6  尿素作用下甲烷爆炸压力与HNO耦合变化关系

    Figure  6.  The coupling relationship plots of methane explosion pressure and the content of HNO under urea condition

    图  7  尿素作用下甲烷爆炸压力与OH自由基耦合关系

    Figure  7.  The coupling relationship plots of methane explosion pressure and the content of OH under urea condition

    图  8  甲烷爆炸反应简化机理图

    Figure  8.  The reduced chemical mechanism of methane explosion

    表  1  实验方案详细表

    Table  1.   Testing program

    光源点火能量/
    J
    光栅光谱仪
    拍摄波段/nm
    甲烷体积分数/
    %
    粉体浓度/
    (mg∙L−1)
    实验组数用途
    甲烷爆炸10187~537
    537~887
    887~1 210
    100各3组甲烷爆炸光谱及压力数据采集
    金属丝点火10187~537
    537~887
    887~1 210
    00各3组剔除点火丝火焰对光谱数据的影响
    尿素抑爆火焰10187~537
    537~887
    887~1 210
    1010/20/30/40/50各3组尿素粉体抑爆火焰光谱及压力数据采集
    下载: 导出CSV
  • [1] 左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.

    ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80.
    [2] 聂百胜, 杨龙龙, 孟筠青, 等. 基于图像处理的管道瓦斯爆炸火焰传播速度特征 [J]. 煤炭学报, 2016, 41(4): 884–891. DOI: 10. 13225/j. cnki. Jccs. 2015. 1106.

    NIE B S, YANG L L, MENG J Q, et al. Characteristics of flame propagation velocity of gas explosion in duct based on image processing [J]. Journal of China Coal Society, 2016, 41(4): 884–891. DOI: 10. 13225/j. cnki. Jccs. 2015. 1106.
    [3] 高娜, 张延松, 胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究 [J]. 爆炸与冲击, 2016, 36(2): 218–223. DOI: 10.11883/1001-1455(2016)02-0218-06.

    GAO N, YANG Y S, HU Y T. Experiental study on gas explosion hazard under different temperatures and pressures [J]. Explosion and Shock Waves, 2016, 36(2): 218–223. DOI: 10.11883/1001-1455(2016)02-0218-06.
    [4] 王宝璐, 额日其太, 李挺. 氧化剂含氧浓度对甲烷反扩散火焰光谱特性影响实验研究 [J]. 煤矿安全, 2017, 38(4): 878–884. DOI: 10.13675/j.cnki.tjjs.2017.04.019.

    WANG B L, ERIQITAL, LI T. Experiental study of effects of oxygen mole fraction in oxidizer on inverse methane/air diffusion flame emission spectrum properties [J]. Journal of Propulsion Technology, 2017, 38(4): 878–884. DOI: 10.13675/j.cnki.tjjs.2017.04.019.
    [5] 罗振敏, 邓军, 文虎, 等. 纳米粉体抑制矿井瓦斯爆炸的实验研究 [J]. 中国安全科学学报, 2008, 18(12): 84–88. DOI: 10.3969/j.issn.1003-3033.2008.12.014.

    LUO Z M, DENG J, WEN H, et al. Experimental study on the suppression of gas explosion with nanometer powder in coal mines [J]. China Safety Science Journal, 2008, 18(12): 84–88. DOI: 10.3969/j.issn.1003-3033.2008.12.014.
    [6] 程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76.

    CHENG F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76.
    [7] SREENIVASAN R, MINKYU L, V’YACHESLAV A, et al. Suppression of premixed flames with inert particles [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 46–51. DOI: 10.1016/j.jlp.2015.03.009.
    [8] 文虎, 曹玮, 王开阔, 等. ABC干粉抑制瓦斯爆炸的实验研究 [J]. 中国安全生产科学技术, 2011, 7(6): 9–12. DOI: 10.3969/ j.issn.1673-193X.2011.06.002.

    WEN H, CAO W, WANG K K, et al. Experiment study on ABC dry powder to repress gas explosion [J]. Journal of Safety Science and Technology, 2011, 7(6): 9–12. DOI: 10.3969/ j.issn.1673-193X.2011.06.002.
    [9] 文虎, 王秋红, 罗振敏, 等. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究 [J]. 西安科技大学学报, 2009, 29(4): 388–390. DOI: 10.3969/j.issn.1672-9315.2009.04.003.

    WEN H, WANG Q H, LUO Z, et al. Experiment on Al(OH)3 ultrafine powder suppressing methane explosion [J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 388–390. DOI: 10.3969/j.issn.1672-9315.2009.04.003.
    [10] 王天政. 超细粉体抑制管道瓦斯爆炸实验研究[D]. 河南, 焦作: 河南理工大学, 2012: 10−15.

    WANG T Z. Experiment study on the gas explosion suppression by the ultrafine powder in tube [D]. Jiaozuo, Henan: Henan Polytechnic University, 2012: 10−15.
    [11] MIKHAIL K. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 729–735. DOI: 10.1016/j.jlp.2006.05.004.
    [12] 罗振敏, 张群, 王华, 等. 基于FLACS的受限空间瓦斯爆炸数值模拟 [J]. 煤炭学报, 2013, 38(8): 1381–1387.

    LUO Z M, ZHANG Q, WANG H, et al. Numerical simulation of gas explosion in confined space with FLACS [J]. Journal of China Coal Society, 2013, 38(8): 1381–1387.
    [13] 王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟[D]. 西安: 西安科技大学, 2014: 21−26.

    WANG T. Experiment and numerical studies on the methane explosion and the suppression effect of CO2 in vessel [D]. Xi’an: Xi’an University of Science and Technology, 2014: 21−26.
    [14] 李孝斌. 矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D]. 西安: 西安科技大学, 2009: 35−37.

    LI X B. Analysis of reaction dynamics and study on optical characteristic of gas explosion in induction period [D]. Xi’an: Xi’an University of Science and Technology, 2009: 35−37.
    [15] 杨剑. 超细粉体作用下甲烷扩散火焰燃烧及辐射光谱特性研究[D]. 杭州: 中国计量学院, 2015: 20−45.

    YANG J. Study on combustion and spectrum characteristics of methane diffusion flame interacted with superfine powder [D]. Hangzhou: China Jiliang University, 2015: 20−45.
    [16] 杨翔. 甲烷爆炸初期NH4H2PO4粉体抑爆机理及应用研究[D]. 河北廊坊: 中国人民武装警察部队学院, 2017: 15−39.

    YANG X. NH4H2PO4 power explosion suppression mechanism in methane explosion prime and application [D]. Langfang, Hebei: The Chinese People’s Armed Police Force Academy, 2017: 15−39.
    [17] PADLEY P J. Flames: their structure, radiation and temperature [J]. Physics Bulletin, 1974, 22(3): 10–199.
    [18] HIGGINS B, MCQUAY M Q, LACAS F, et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames [J]. Fuel, 2001, 80(11): 1583. DOI: 10.1016/S0016-2361(01)00040-0.
    [19] 刘奎, 李孝斌, 郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究 [J]. 光谱学与光谱分析, 2015, 35(8): 2067–2071. DOI: 10.3964/j.issn.1000-0593(2015)08-2067-06.

    LIU K, LI X B, ZHENG D. The study about spectrum characteristic analysis method in the induction period of gas explosion flame [J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2067–2071. DOI: 10.3964/j.issn.1000-0593(2015)08-2067-06.
    [20] 李孝斌, 李树刚, 林海飞, 等. 矿井瓦斯爆炸感应期确定方法的实验研究 [J]. 中国矿业大学学报, 2009, 38(4): 540–543. DOI: 10.3321/j.issn:1000-1964.2009.04.015.

    LI X B, LI S G, LIN H F, et al. Experiental research on the method of ascertaining the induction period of gas explosion in mine [J]. Journal of China University of Mining and Technology, 2009, 38(4): 540–543. DOI: 10.3321/j.issn:1000-1964.2009.04.015.
    [21] 刘合, 陈方, 刘洪, 等. 甲烷/空气预混超声速燃烧的18步简化机理 [J]. 燃烧科学与技术, 2012, 18(5): 467–472.

    LIU H, CHEN F, LIU H, et al. 18-step reduced mechanism for methane/air premixed supersonic combustion [J]. Journal of Combustion Science and Technology, 2012, 18(5): 467–472.
    [22] 侯金丽, 金平, 蔡国飙. 基于敏感性分析的氧/甲烷燃烧反应简化机理 [J]. 航空动力学, 2012, 27(7): 1549–1554.

    HOU J L, JIN P, CAI G B. Reduced mechanism for oxygen/methane combustion based on sensitivity analysis [J]. Journal of Aerospace Power, 2012, 27(7): 1549–1554.
    [23] HE Z, LI X B, LI M L, et al. The intrinsic mechanism of methane oxidation under explosion condition: a combined ReaxFF and DFT study [J]. Fuel, 2014, 124: 85–90. DOI: 10.1016/j.fuel.2014.01.070.
    [24] 余明高, 王天政, 游浩. 粉体材料热特性对瓦斯抑爆效果影响的研究 [J]. 煤炭学报, 2012, 37(5): 830–835.

    YU M G, WANG T Z, YOU H. Study on gas explosion suppression influence of thermal properties of powder [J]. Journal of China Coal Society, 2012, 37(5): 830–835.
    [25] 于健康, 张浩, 杨天虹, 等. HCNO自由基与羟基在气相中反应机理的理论研究 [J]. 分子科学学报, 2010, 26(3): 149–153. DOI: 10.3969/j.issn.1000-9035.2010.03.001.

    YU J K, ZHANG H, YANG T H, et al. Reaction mechanism of HCNO+OH in the gas phase [J]. Journal of Molecular Science, 2010, 26(3): 149–153. DOI: 10.3969/j.issn.1000-9035.2010.03.001.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5380
  • HTML全文浏览量:  1407
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-09-30
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回