受限空间内甲醇喷雾液滴形成及其爆炸特性

臧小为 虞浩 吕启申 潘旭海 蒋军成

臧小为, 虞浩, 吕启申, 潘旭海, 蒋军成. 受限空间内甲醇喷雾液滴形成及其爆炸特性[J]. 爆炸与冲击, 2020, 40(3): 032201. doi: 10.11883/bzycj-2019-0128
引用本文: 臧小为, 虞浩, 吕启申, 潘旭海, 蒋军成. 受限空间内甲醇喷雾液滴形成及其爆炸特性[J]. 爆炸与冲击, 2020, 40(3): 032201. doi: 10.11883/bzycj-2019-0128
ZANG Xiaowei, YU Hao, LYU Qishen, PAN Xuhai, JIANG Juncheng. Formation and explosion characteristics of methanol spray droplets in confined space[J]. Explosion And Shock Waves, 2020, 40(3): 032201. doi: 10.11883/bzycj-2019-0128
Citation: ZANG Xiaowei, YU Hao, LYU Qishen, PAN Xuhai, JIANG Juncheng. Formation and explosion characteristics of methanol spray droplets in confined space[J]. Explosion And Shock Waves, 2020, 40(3): 032201. doi: 10.11883/bzycj-2019-0128

受限空间内甲醇喷雾液滴形成及其爆炸特性

doi: 10.11883/bzycj-2019-0128
基金项目: 国家重点研发计划(2017YFC0804700,2016YFC0800100)
详细信息
    作者简介:

    臧小为(1984- ),男,博士,讲师,nanozang@njtech.edu.cn

    通讯作者:

    潘旭海(1977- ),男,博士,教授,xuhaipan@njtech.edu.cn

  • 中图分类号: O381; X932

Formation and explosion characteristics of methanol spray droplets in confined space

  • 摘要: 为防控工业喷雾爆炸和完善喷雾爆炸测试方法,在20 L球形喷雾爆炸测试系统内,实验研究了不同环境压力、喷射压力及浓度下的甲醇喷雾液滴形成及爆炸特性规律。结果表明:增大喷射压力更易致使甲醇破碎成微小液滴,甲醇喷雾液滴爆炸极限范围变宽;环境压力的增大导致甲醇喷雾液滴粒径变大,喷雾液滴爆炸极限范围变窄,一定程度上可以有效抑制甲醇泄露可能导致的次生衍生事故发生。当爆炸容器内环境压力为0.1 MPa、喷射压力为2.1 MPa、甲醇喷雾浓度为356.4 g/m3、甲醇液滴索太尔平均直径为2.5 μm时,爆炸特性参数(最大爆炸压力、最大爆炸压力上升速率及层流燃烧速度)在上述拐点处取得最大值;小粒径(1~15 μm)的液滴在外界能量作用下,更易被点燃,且爆炸过程中瞬态物理化学反应更为迅速和剧烈;较大粒径(22 μm以上)的液滴会出现点火困难现象,然而点火成功后,爆炸特性参数均随甲醇喷雾浓度增加而增加,呈现近似线性规律,此时液滴粒径对上述爆炸特性参数的影响可以忽略。研究结果有助于理解喷雾液滴爆炸规律、完善相应测试方法和安全设计。
  • 图  1  实验装置

    Figure  1.  Experimental system

    图  2  马尔文Spraytec喷雾粒度仪系统

    Figure  2.  Material laser diffraction system

    图  3  压力、浓度对甲醇液滴粒径的影响

    Figure  3.  Effects of pressure and concentrationon on droplet size of methanol

    图  4  温度对甲醇液滴粒径的影响

    Figure  4.  Effect of temperatures on droplet size of methanol

    图  5  喷射压力、浓度对甲醇喷雾液滴爆炸特性的影响

    Figure  5.  Effects of injection pressure and concentration on methanol droplet explosion

    图  6  环境压力、浓度对甲醇喷雾爆炸特性的影响

    Figure  6.  Effects of ambient pressure and concentration on methanol droplet explosion

    表  1  甲醇喷雾浓度与化学当量比的对应关系

    Table  1.   Relationship between methanol spray concentration and its chemical equivalence ratio

    ρm/(g·m−3φ
    39.60.2
    118.80.6
    198.01.0
    277.21.4
    356.41.8
    435.62.2
    514.82.6
    下载: 导出CSV

    表  2  喷射压力对甲醇液滴云爆炸极限的影响

    Table  2.   Effect of injection pressure on explosion limit of methanol droplet explosion

    ρm/(g·m−3pj/MPa点火成功 ρm/(g·m−3pj/MPa点火成功ρm/(g·m−3pj/MPa点火成功
    198.01.5277.21.5554.41.5
    198.01.7277.21.7554.41.7
    198.01.9277.21.9554.41.9
    198.02.1277.22.1554.42.1
    198.02.3277.22.3554.42.3
    下载: 导出CSV

    表  3  环境压力对甲醇液滴云爆炸极限的影响

    Table  3.   Effect of ambient pressure on explosion limit of methanol droplet explosion

    ρm/(g·m−3pa/MPa点火成功ρm/(g·m−3pa/MPa点火成功
    198.00.100356.40.100
    198.00.125356.40.125
    198.00.150356.40.150
    198.00.175356.40.175
    198.00.200356.40.200
    277.20.100594.00.100
    277.20.125594.00.125
    277.20.150594.00.150
    277.20.175594.00.175
    277.20.200594.00.200
    下载: 导出CSV

    表  4  喷射压力对爆炸指数的影响

    Table  4.   Effect of injection pressure on explosion index of methanol droplet explosion

    pj/MPaρm/(g·m−3)Kst/(MPa·m·s−1)pj/MPaρm/(g·m−3)Kst/(MPa·m·s−1)pj/MPaρm/(g·m−3)Kst/(MPa·m·s−1)
    1.5198.010.7531.5356.426.6821.5514.829.072
    1.7198.012.7441.7356.428.6761.7514.836.240
    1.9198.016.3281.9356.448.1871.9514.839.824
    2.1198.020.3102.1356.472.8782.1514.848.984
    2.3198.013.5402.3356.431.4612.3514.841.815
    1.5277.223.0981.5435.629.072
    1.7277.224.6911.7435.636.240
    1.9277.225.8861.9435.639.824
    2.1277.251.7722.1435.659.736
    2.3277.226.6822.3435.646.196
    下载: 导出CSV

    表  5  环境压力对爆炸指数的影响

    Table  5.   Effect of ambient pressure on explosion index of methanol droplet explosion

    pa/MPaρm/(g·m−3)Kst/(MPa·m·s−1)pa/MPaρm/(g·m−3)Kst/(MPa·m·s−1)
    0.100198.020.3100.100435.659.736
    0.100277.251.7720.125435.624.293
    0.125277.214.7350.150435.613.939
    0.150277.29.3060.175435.69.750
    0.175277.27.5670.200435.68.759
    0.100356.472.8780.100514.848.984
    0.125356.420.3100.125514.826.861
    0.150356.412.7790.150514.815.531
    0.175356.47.9650.175514.810.354
    0.200356.46.9710.200514.89.558
    下载: 导出CSV
  • [1] 吕启申, 臧小为, 潘旭海, 等. 温度和浓度对甲醇喷雾爆炸特性参数的影响 [J]. 爆炸与冲击, 2019, 39(9): 095402. DOI: 10.11883/bzycj-2018-0121.

    LYU Q S, ZANG X W, PAN X H, et al. Effects of temperature and concentration on characteristic parameters of methanol explosion [J]. Explosion and Shock Waves, 2019, 39(9): 095402. DOI: 10.11883/bzycj-2018-0121.
    [2] SAEED K. Determination of the explosion characteristics of methanol-air mixture in a constant volume vessel [J]. Fuel, 2017, 210: 729–737. DOI: 10.1016/j.fuel.2017.09.004.
    [3] MITU M, BRANDES E. Explosion parameters of methanol-air mixtures [J]. Fuel, 2015, 158: 217–223. DOI: 10.1016/j.fuel.2015.05.024.
    [4] GRABARCZYK M, TEODORCZYK A, SARLI V D, et al. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 775–779. DOI: 10.1016/j.jlp.2016.08.013.
    [5] WANG G, LI Y, LI L, et al. Experimental and theoretical investigation on cellular instability of methanol/air flames [J]. Fuel, 2018, 225: 95–103. DOI: 10.1016/j.fuel.2018.03.160.
    [6] ZUO Z, PEI Y, QIN J, et al. Laminar burning characteristics of premixed methane-dissociated methanol-air mixtures under lean burn conditions [J]. Applied Thermal Engineering, 2018, 140: 304–312. DOI: 10.1016/j.applthermaleng.2018.05.040.
    [7] 秦静, 徐鹤, 裴毅强, 等. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响 [J]. 吉林大学学报(工学版), 2018, 48(5): 1475–1482. DOI: 10.13229/j.cnki.jdxbgxb20170847.

    QIN J, XU H, PEI Y Q, et al. Influence of initial temperature and initial pressure on premixed laminar burning characteristics of methane-dissociated methanol flames [J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1475–1482. DOI: 10.13229/j.cnki.jdxbgxb20170847.
    [8] 张琰, 尼华, 张欣, 等. 二氯甲烷和甲醇混合物爆炸下限的试验研究 [J]. 消防科学与技术, 2018, 37(8): 1020–1023. DOI: 10.3969/j.issn.1009-0029.2018.08.003.

    ZHANG Y, NI H, ZHANG X, et al. Experimental study on lower explosive limits of dichloromethane-methanol blends [J]. Fire Science and Technology, 2018, 37(8): 1020–1023. DOI: 10.3969/j.issn.1009-0029.2018.08.003.
    [9] 孙彦龙, 谭迎新, 谢溢月, 等. 甲醇汽油混合物爆炸下限测试研究 [J]. 中国安全科学学报, 2015, 25(12): 56–61. DOI: 10.16265 / j.cnki.issn1003-3033.2015.12.010.

    SUN Y L, TAN Y X, XIE Y Y, et al. Study on lower explosive limits of methanol-gasoline blends [J]. China Safety Science Journal, 2015, 25(12): 56–61. DOI: 10.16265 / j.cnki.issn1003-3033.2015.12.010.
    [10] 刘金彪, 谭迎新, 于金升, 等. 氮气与二氧化碳对甲醇爆炸极限的影响 [J]. 测试技术学报, 2017, 31(6): 546–550. DOI: 1671-7449(2017)-06-0546-05.

    LIU J B, TAN Y X, YU J S, et al. Influence of nitrogen and carbon dioxide on methanol explosion limit [J]. Journal of Test and Measurement Technology, 2017, 31(6): 546–550. DOI: 1671-7449(2017)-06-0546-05.
    [11] BEECKMANNN J, CAI L, PITSCH H. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure [J]. Fuel, 2014, 117(1): 340–350. DOI: 10.1016/j.fuel.2013.09.025.
    [12] ZHANG X, WANG G, ZOU J, et al. Investigation on the oxidation chemistry of methanol in laminar premixed flames [J]. Combustion & Flame, 2017, 180: 20–31. DOI: 10.1016/j.combustflame.2017.02.016.
    [13] 陈长坤, 王玮玉, 刘晅亚, 等. 隧道内甲醇液体蒸发及蒸气扩散规律数值模拟分析 [J]. 中国安全生产科学技术, 2017(12): 52–57. DOI: 1673-193X(2017)-12-0052-06.

    CHEN C K, WANG W Y, LIU X Y, et al. Numerical simulation analysis on evaporation of methanol liquid and diffusion laws of methanol vapor in tunnel [J]. Journal of Safety Science and Technology, 2017(12): 52–57. DOI: 1673-193X(2017)-12-0052-06.
    [14] 解立峰, 李斌, 沈正祥, 等. 可燃液体爆燃特性及其抑制实验 [J]. 爆炸与冲击, 2009, 29(6): 659–664. DOI: 10.11883/1001-1455(2009)06-0659-06.

    XIE L F, LI B, SHEN Z X, et al. Experiment on combustion and detonation characteristics and its suppression for liquid vapor [J]. Explosion and Shock Waves, 2009, 29(6): 659–664. DOI: 10.11883/1001-1455(2009)06-0659-06.
    [15] 尤祖明, 祝逢春, 王永旭, 等. 模拟高原环境条件下C5-C6燃料的爆轰特性研究 [J]. 爆炸与冲击, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.

    YOU Z M, ZHU F C, WANG Y X, et al. Detonation characteristics of C5-C6 fuels under simulated plateau-condition [J]. Explosion and Shock Waves, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.
    [16] 高岩. 粒子场数字全息测量方法研究[D]. 天津: 天津大学, 2008: 25−28. DOI: 10.7666/d.y1530820.
    [17] 余留芳, 李磊, 严晓芳, 等. 喷嘴结构对液体喷射破碎粒径影响的实验研究 [J]. 科学技术与工程, 2018, 18(18): 151–155. DOI: 10.3969/j.issn.1671-1815.2018.18.023.

    YU L F, LI L, YAN X F, et al. Experiment study on droplet size of liquid jet under different nozzle structure conditions [J]. ScienceTechnology and Engineering, 2018, 18(18): 151–155. DOI: 10.3969/j.issn.1671-1815.2018.18.023.
    [18] 蒋军成. 化工安全[M]. 北京: 机械工业出版社, 2008: 60−65.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  5670
  • HTML全文浏览量:  1609
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-09-02
  • 网络出版日期:  2020-07-25
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回