地下强爆炸诱发地表塌陷的试验模拟与应用

徐小辉 李杰 王明洋

徐小辉, 李杰, 王明洋. 地下强爆炸诱发地表塌陷的试验模拟与应用[J]. 爆炸与冲击, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167
引用本文: 徐小辉, 李杰, 王明洋. 地下强爆炸诱发地表塌陷的试验模拟与应用[J]. 爆炸与冲击, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167
XU Xiaohui, LI Jie, WANG Mingyang. Simulation and analysis of surface subsidence associated with the underground strong explosion[J]. Explosion And Shock Waves, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167
Citation: XU Xiaohui, LI Jie, WANG Mingyang. Simulation and analysis of surface subsidence associated with the underground strong explosion[J]. Explosion And Shock Waves, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167

地下强爆炸诱发地表塌陷的试验模拟与应用

doi: 10.11883/bzycj-2019-0167
基金项目: 国家自然科学基金(51409257)
详细信息
    作者简介:

    徐小辉(1983- ),男,硕士,讲师,xuxiaohui168@126.com

    通讯作者:

    李 杰(1981- ),男,博士,副教授,lijierf@163.com

  • 中图分类号: O382.2;TP91

Simulation and analysis of surface subsidence associated with the underground strong explosion

  • 摘要: 地下核爆炸后会在地表产生下陷弹坑、塌陷带等不可逆变形爆炸后效应,利用地表形变信息对地下核试验进行有效监控和评估具有十分重要的意义。基于考虑重力影响的地下强爆炸塌陷成坑相似理论,利用陆军工程大学自主研制的地下爆炸效应真空室模拟试验装置,对2017年9月3日朝鲜地下核试验诱发的地表不可逆变形进行了模型试验。试验结果表明,地表塌陷带半径为257 m,下陷弹坑的半径为154 m,与美国、前苏联等国家已有的地下核试验经验公式的数据结果基本相当,并且符合天基雷达TS-InSar卫星监测数据的估算结果,验证了地下爆炸真空室模型试验在地下强爆炸诱发地表不可逆变形区域模拟和评估的可行性,成为有效补充地震波和卫星监测地下强爆炸的一种研究手段。
  • 图  1  真空室爆炸模拟系统承压罐体

    Figure  1.  Vacuum chamber of explosive simulation apparatus

    图  2  爆源装置系统

    Figure  2.  Experimental devices for simulation of explosion cavity

    图  3  FT4多功能粉末流动性测试仪及旋转剪切盒

    Figure  3.  FT4 Multifunctional powder flow tester and rotation shear cell

    图  4  模拟材料剪切强度性能测试时程曲线

    Figure  4.  Shear strength performance of model material vs. time

    图  5  模拟材料屈服迹线图

    Figure  5.  Yield locus of model material

    图  6  试验布置图(单位:mm)

    Figure  6.  Layout of experiment (unit: mm)

    图  7  半对称爆源结构

    Figure  7.  Semi-symmetric structure for simulationof explosion cavity

    图  8  模型中地表塌陷最终形态

    Figure  8.  Skeleton map of ground subsidence induced by the underground explosion

    图  9  2017年9月3日朝鲜核爆炸诱发地表塌陷的天基雷达TerraSAR-X监测结果[14]

    Figure  9.  Subsidence derived from the TerraSAR-X images associated with the September 2017 North Korean Nuclear Test[14]

    图  10  不同地下爆炸类型的划分区域

    Figure  10.  Different regimes for underground explosion in the parameter plane ${h / r}$ and $\bar A$

    图  11  坚硬岩石中下陷弹坑的半径与模型数据对比

    Figure  11.  Comparison of crater dimensions for explosions in hard rock with model for crater radius

    图  12  坚硬岩石中下陷弹坑深度与模型数据对比

    Figure  12.  Comparison of crater dimensions for explosions in hard rock with model for crater depth

    表  1  地下爆炸空腔气体势能计算表达式[18]

    Table  1.   Formula for gaseous energy in cavity[18]

    岩石特性空腔气体势能A
    不含气体岩石$A = {{0.49q} / {{{\bar r}_{\rm{n}}}^{0.84}}}$
    仅含自由水的硅酸盐类岩石(花岗岩、凝灰岩、冲积层等)$A = \displaystyle\frac{{0.49q}}{{{{\bar r}_{\rm{n}} }^{0.84}}}(1 + 5.8\eta _{\rm{w}} ^{0.7})$
    仅含碳酸气的碳酸盐类岩石(硬石膏、方解石、石灰岩等)$A = \displaystyle\frac{{0.49q}}{{{{\bar r}_{\rm{n}}}^{0.84}}}(1 + 1.96\eta _{{{{\rm{co}} }_2}}^{0.7})$
    混合含气岩石$A = \displaystyle\frac{{0.49q}}{{{{\bar r}_{\rm{n}} }^{0.84}}}(1 + 5.8\eta _{\rm{\varepsilon}} ^{0.7}),\;\;{\eta _{\rm{\varepsilon}} }{\rm{ = }}{\eta _{\rm{w}} } + {{{\eta _{{{{\rm{co}} }_2}}}} / {4.7}}$
    下载: 导出CSV
  • [1] ZHAO L F, XIE X B, WANG W M, et al. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test [J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2571–2589. DOI: 10.1785/0120080128.
    [2] WEN L X, LONG H. High-precision location of North Korea’s 2009 nuclear test [J]. Seismological Research Letters, 2010, 81(1): 26–29. DOI: 10.1785/gssrl.81.1.26.
    [3] ZHAO L F, XIE X B, WANG W M, et al. Yield estimation of the 25 May 2009 North Korean nuclear explosion [J]. Bulletin of the Seismological Society of America, 2012, 102: 467–478. DOI: 10.1785/0120110163.
    [4] FORD S, DREGER D, WALTER W. Source analysis of the Memorial Day explosion, Kimchaek, North Korea [J]. Geophysical Research Letters, 2009, 36: L21304. DOI: 10.1029/2009GL040003.
    [5] CHUN K Y, WU Y, HENDERSON G. Magnitude estimation and source discrimination: a close look at the 2006 and 2009 North Korean underground nuclear explosions [J]. Bulletin of the Seismological Society of America, 2011, 101: 1315–1329. DOI: 10.1785/0120100202.
    [6] ZHANG M, WEN L. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea [J]. Seismological Research Letters, 2014, 86(1): 138–145. DOI: 10.1785/02201401170.
    [7] ZHANG M, WEN L. High-precision location and yield of North Korea’s 2013 nuclear test [J]. Geophysical Research Letters, 2013, 40(12): 2941–2946. DOI: 10.1002/grl.50607.
    [8] ZHAO L F, XIE X B, WANG W M, et al. The 12 February 2013 North Korean underground nuclear test [J]. Seismological Research Letters, 2014, 85(1): 130–134. DOI: 10.1785/0220130103.
    [9] ZHAO L F, XIE X B, WANG W M, et al. Seismological investigation of the 2016 January 6 North Korean underground nuclear test [J]. Geophysical Journal International, 2016, 206(3): 1487–1491. DOI: 10.1093/gji/ggw239.
    [10] TIAN D D, YAO J Y, WEN L X. Collapse and earthquake swarm after North Korea’s 3 September 2017 nuclear test [J]. Geophysical Research Letters, 2018, 45(9): 3976–3983. DOI: 10.1029/2018GL077649.
    [11] 赵连锋, 谢小碧, 何熹, 等. 2017年9月3日朝鲜地下核试验的地震学鉴别和当量估计 [J]. 科学通报, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.

    ZHAO Lianfeng, XIE Xiaobi, HE Xi, et al. Seismological discrimination and yield estimation of the 3 September 2017 Democratic People’s Republic of Korea (DPRK) underground nuclear test [J]. Chinese Science Bulletin, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.
    [12] HU J, LI Z W, DING X L, et al. Resolving three-dimensional surface displacements from InSAR measurements: a review [J]. Earth Science Reviews, 2014, 133: 1–17. DOI: 10.1016/j.earscirev.2014.02.005.
    [13] ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes [J]. Nature Communications, 2016, 7: 13844. DOI: 10.1038/ncomms13844.
    [14] WANG T, SHI Q, NIKKHOO M. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test [J]. Science, 2018, 361(6398): 166–170. DOI: 10.1126/science.aar7230.
    [15] ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03 [R]. 2015.
    [16] 岳松林, 邱艳宇, 王德荣, 等. 岩石中爆炸成坑效应的模型试验方法及对比分析 [J]. 岩石力学与工程学报, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.

    YUE Songlin, QIU Yanyu, WANG Derong, et al. Modeling experiment methods for crating effects of explosions in rocks and comparative analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.
    [17] ADUSHKIN V V, PERNIK L M. Characteristics of the formation of subsidence craters [J]. Fizika Goreniya I Vzryva, 1972, 8(4): 541–552. DOI: 10.1007/BF00741202.
    [18] 徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟试验装置研制 [J]. 爆炸与冲击, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.

    XU Xiaohui, QIU Yanyu, WANG Mingyang, et al. Development of the testing apparatus for modeling large-scale underground cratering explosions [J]. Explosion and Shock Waves, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.
    [19] ОРЛЕНКО Л П. 爆炸物理学(上册) [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 677−688.
    [20] 徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.

    XU Xiaohui, QIU Yanyu, Wang Mingyang, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
    [21] ADUSHKIN V V, LEITH W. The containment of Soviet underground nuclear explosions: USGS Open File Report 01-312[R]. USA: US Department of the Interior Geological Survey, 2001.
    [22] ROUGIER E, PATTON H J, Knight E E, et al. Constraints on burial depth and yield of the 25 May 2009 North Korean test from hydrodynamic simulations in a granite medium [J]. Geophysical Research Letters, 2011, 38(6): L16316. DOI: 10.1029/2011GL048269.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  5637
  • HTML全文浏览量:  1680
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-05-28
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回