Application of flame retardant medium in fuel dispersion driven by explosive
-
摘要: 为解决燃料空气炸药中的燃料在中心分散装药爆炸驱动抛撒过程中易发生的窜火问题,结合中心分散装药结构设计,引入以超细干粉灭火剂为主体的阻燃介质,采用高速录像和红外热成像仪研究了中心分散药外部填充阻燃介质的情况下,对中心分散药爆炸火球产生的高温及火焰的抑制情况。试验结果表明,中心分散药爆炸火球的最高温度为1 355.4 ℃,温度超过150 ℃的持续时间为264.8 ms。外部填充阻燃介质后,中心分散药爆炸产生的火焰基本消失,火球最高温度下降90%以上,火球表面温度分布不超过100 ℃。同时进行了验证试验,采用填充阻燃介质的中心分散药抛撒1 kg的乙醚和铝粉的混合燃料,分散药与燃料的质量比超过4%时,云雾仍未发生窜火。表明填充阻燃介质可以有效防止燃料在爆炸抛撒过程中发生窜火的问题。Abstract: To solve the premature-combustion problem of FAE fuel during the dispersal process by explosive, fire retardant medium with superfine ABC powder as the main component was introduced along with the structural design of central dispersed explosive. High-speed camera and infrared thermal imager were used to study the temperature and flame generated by the dispersed explosive. The experimental results show that the maximum temperature of the dispersed explosive fireball was 1355.4 °C, and the duration of the temperature exceeding 150 °C was 264.8 ms. The flame generated by the dispersed explosive almost completely disappears after the introduction of the flame retardant medium. The maximum temperature of the fireball decreases by more than 90%, and the surface temperature of the fireball does not exceed 100 °C. At the same time, the verification experiment was carried out. The mixture fuel of 1 kg ether and aluminum powder was dispersed by the dispersed explosive filled with flame retardant medium. When the mass ratio of dispersed explosive to fuel was more than 4%, the premature-combustion was restrained successfully. It shows that filling the flame retardant medium can effectively prevent the premature-combustion in the fuel dispersion process.
-
Key words:
- fuel air explosive /
- dispersed explosive /
- premature-combustion /
- flame retardant medium
-
表 1 内管直径和侧面阻燃介质厚度
Table 1. Inner tube diameter and side flame retardant medium thickness
内管直径/mm 20 23 26 30 38 阻燃介质厚度/mm 0 1.5 3.0 5.0 9.0 表 2 火球表面温度测试结果
Table 2. Fireball surface temperature test results
序号 阻燃介质厚度/
mm最高温度/
℃高温持续时间/ms
(大于150 ℃)1 0 1 355.4 264.8 2 1.5 124.1 0 3 3.0 91.1 0 4 5.0 77.2 0 5 9.0 59.9 0 -
[1] 白春华, 粱慧敏, 李建平, 等. 云雾爆轰[M]. 北京: 科学出版社, 2012. [2] 饶国宁,周莉,宋述忠,等. 云爆药剂爆炸超压测试及威力评价 [J]. 爆炸与冲击, 2018, 38(3): 579–585. DOI: 10.11883/bzycj-2016-0245.RAO G N, ZHOU L, SONG S Z, et al. Explosion overpressure measurement and power evaluation of FAE [J]. Explosion and Shock Waves, 2018, 38(3): 579–585. DOI: 10.11883/bzycj-2016-0245. [3] 王晔, 白春华, 李建平. 动态云雾形成及爆轰场特性 [J]. 含能材料, 2017, 25(6): 466–471. DOI: 10.11943/j.issn.1006-9941.2017.06.004.WANG Y, BAI C H, LI J P. Formation and blasting field characteristics of moving cloud detonation [J]. Chinese Journal of Energetic Materials, 2017, 25(6): 466–471. DOI: 10.11943/j.issn.1006-9941.2017.06.004. [4] 刘庆明, 白春华, 李建平. 多相燃料空气炸药爆炸压力场研究 [J]. 实验力学, 2008, 23(4): 360–370.LIU Q M, BAI C H, LI J P. Study on blast field characteristics of multiphase fuel air explosive [J]. Journal of Experimental Mechanics, 2008, 23(4): 360–370. [5] LIU G, HOU F, CAO B, et al. Experimental study of fuel-air explosive [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 213–217. DOI: 10.1007/s10573-008-0028-7. [6] LI Y, SONG Z, LI Y. Theoretical analysis and numerical simulation for the spill procedure of liquid fuel of fuel air explosive with shell [J]. International Journal of Non-Linear Mechanics, 2010, 45(7): 699–703. DOI: 10.1016/j.ijnonlinmec.2010.04.004. [7] 史远通, 张奇. 爆炸驱动燃料抛散的非理想化特征 [J]. 含能材料, 2015, 23(4): 330–335. DOI: 10.11943/j.issn.1006-9941.2015.04.004.SHI Y T, ZHANG Q. Non-ideal characteristics of fuel dispersal driven by explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(4): 330–335. DOI: 10.11943/j.issn.1006-9941.2015.04.004. [8] 吴德义, 杨基明. 强冲击波作用下液体抛撒的实验研究 [J]. 爆炸与冲击, 2003, 23(1): 91–95.WU D Y, YANG J M. Experimental investigation on liquid dispersal induced by explosions [J]. Explosion and Shock Waves, 2003, 23(1): 91–95. [9] APPARAO A, RAO C R, TEWARI S P. Studies on formation of unconfined detonable vapor cloud using explosive means [J]. Journal of Hazardous Materials, 2013, 254-255(6): 214–220. DOI: 10.1016/j.jhazmat.2013.02.056. [10] 方伟, 赵省向, 李文祥, 等. 爆炸抛撒过程中FAE云雾的运动特性 [J]. 含能材料, 2015, 23(11): 1061–1066. DOI: 10.11943/j.issn.1006-9941.2015.11.005.FANG W, ZHAO S X, LI W X, et al. Movement characteristics of fuel-air explosive (FAE) clouds in the explosion dispersal process [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1061–1066. DOI: 10.11943/j.issn.1006-9941.2015.11.005. [11] 郭学永, 惠君明. 装置参数对FAE云雾状态的影响 [J]. 含能材料, 2002, 10(4): 161.16–164.GUO X Y, HUI J M. Influence of equipment parameters on FAE cloud status [J]. Chinese Journal of Energetic Materials, 2002, 10(4): 161.16–164. [12] 丁珏, 刘家骢. 液体燃料爆炸抛撒和云雾形成全过程的数值研究 [J]. 火炸药学报, 2001, 24(1): 20–23. DOI: 10.3969/j.issn.1007-7812.2001.01.007.DING J, LIU J C. Numerical study on the whole process of explosive dispersal for forming liquid air cloud [J]. Chinese Journal of Explosives and Propellants, 2001, 24(1): 20–23. DOI: 10.3969/j.issn.1007-7812.2001.01.007. [13] SEDGWICK R T. Fuel air explosives: A parametric investigation: AD-A159177[R]. 1979. [14] ALEY M H. Surface-launched FAE mine field clearance round: USP4, 273, 048 [P]. 1981. [15] 肖绍清. 分散药T型装药控制二次引爆型FAE云雾研究 [J]. 火炸药学报, 2006, 29(2): 10–14. DOI: 10.3969/j.issn.1007-7812.2006.02.004.XIAO S Q. Study on control cloud of twice-detonating FAE by T-type charge of burster [J]. Chinese Journal of Explosives and Propellants, 2006, 29(2): 10–14. DOI: 10.3969/j.issn.1007-7812.2006.02.004. [16] 肖绍清. 复合分散药的性能及对FAE燃料分散的影响 [J]. 含能材料, 2006, 14(4): 244–247;256. DOI: 10.3969/j.issn.1006-9941.2006.04.002.XIAO S Q. Controlling fuel dispersion of FAE by combination burster [J]. Chinese Journal of Energetic Materials, 2006, 14(4): 244–247;256. DOI: 10.3969/j.issn.1006-9941.2006.04.002. [17] 徐晓楠. 气溶胶灭火剂的研究及发展现状 [J]. 消防技术与产品信息, 2002, 9(9): 26–30. DOI: 10.3969/j.issn.1002-784X.2002.09.010.XU X N. Research and development status of aerosol fire extinguishing agent [J]. Fire Technique and Products Information, 2002, 9(9): 26–30. DOI: 10.3969/j.issn.1002-784X.2002.09.010. [18] YANG M, CHEN X, WANG Y, et al. Comparative evaluation of thermal decomposition behavior and thermal stability ofpowdered ammonium nitrate under different atmosphere conditions [J]. Journal of Hazardous Materials, 2017, 33: 10–19. DOI: 10.1016/j.jhazmat.2017.04.063. 期刊类型引用(22)
1. 王冬冬,夏禹辰,黄志来,王士龙. 泡沫混凝土填充薄壁管的低速弯曲性能研究. 包装工程. 2025(07): 278-289 . 百度学术
2. 刘红岩,吕泽鹏,刘康琦,周月智,常书瑞,薛雷,张光雄. 多次落石冲击下棚洞结构动力响应数值模拟. 爆炸与冲击. 2025(05): 159-171 . 本站查看
3. 王星,涂鹏,黄帅,聂亚伟,胡朝霞. 珍珠棉颗粒土垫层与砂土垫层的力学性能比较. 深圳大学学报(理工版). 2025(03): 273-280 . 百度学术
4. 田玥琳,罗刚,邹鹏,张龙睿,侯易凡. 落石冲击作用下拦石桩设计方法研究. 中国地质灾害与防治学报. 2024(03): 88-96 . 百度学术
5. 董川龙,张飞,滕腾,雷利兴. 特大型冒落体冲击下缓冲垫层合理厚度研究. 地下空间与工程学报. 2024(S2): 881-891 . 百度学术
6. 邵国建,仲恒,吕亚茹,王媛,苏宇宸. 落石连续冲击下废弃混凝土垫层缓冲特性大型现场试验研究. 能源与环保. 2023(04): 206-212+218 . 百度学术
7. 佀贞贞,亓兴军,米家禾,王培金,郭冬梅. 落石冲击下拱形明洞结构受力特征及动力响应研究. 特种结构. 2023(05): 39-45 . 百度学术
8. 吕泽鹏,刘红岩. 落石冲击拦石墙的动力响应模拟研究. 公路交通科技. 2022(03): 21-29 . 百度学术
9. 杨少军,吕梁,钟汉清,余志祥,高明昌,刘琛. 落石冲击UHPC棚洞板砂土层缓冲性能研究. 铁道标准设计. 2021(01): 55-59 . 百度学术
10. 蒋敦荣,周晓军,唐建辉,刘科. 落石冲击下大跨度拱形明洞结构力学响应. 铁道标准设计. 2021(04): 122-127 . 百度学术
11. 宋东旭. 落石冲击隧道洞口结构砂垫层的缓冲效果研究. 黑龙江水利科技. 2021(08): 136-139 . 百度学术
12. 宋东旭. 落石冲击隧道洞口结构形状因素影响研究. 黑龙江水利科技. 2021(09): 34-37 . 百度学术
13. 吴建利,胡卸文,梅雪峰. 冲击作用下混凝土板-缓冲层组合结构动力响应. 人民长江. 2020(03): 174-178 . 百度学术
14. 柏雪松,李俊峰,祁小博,陈红旗,刘红岩. 落石冲击棚洞结构的动力响应研究. 公路交通科技. 2020(08): 73-80 . 百度学术
15. 胡卸文,梅雪峰,杨瀛,罗刚,吴建利. 落石冲击荷载作用下的桩板拦石墙结构动力响应. 工程地质学报. 2019(01): 123-133 . 百度学术
16. 周磊,朱哲明,董玉清,应鹏,王磊. 巷道内径向裂纹在冲击载荷作用下的起裂与扩展研究. 采矿与安全工程学报. 2019(02): 256-264 . 百度学术
17. 柳春,余志祥,郭立平,骆丽茹,赵世春. 基于SPH-FEM耦合方法的落石冲击拱形钢筋混凝土棚洞数值模拟. 振动与冲击. 2019(13): 118-125 . 百度学术
18. 袁松,郑国强,张生,黎良仆. 汶川地震后10年公路明(棚)洞病害及处治工程的启示. 隧道建设(中英文). 2019(08): 1372-1379 . 百度学术
19. 路国运,陈鹏程. 薄柔H型钢柱抗侧向冲击性能研究. 太原理工大学学报. 2019(06): 736-742 . 百度学术
20. 方钱宝,张晓强. 桥隧相连落石防护新型结构动力响应分析. 高速铁路技术. 2019(06): 63-68 . 百度学术
21. 周晓军,姜波,周跃峰,朱勇,喻渝,鲜国. 山岭隧道洞口高陡坡面落石被动防护措施设防位置的确定及其应用研究. 高速铁路技术. 2018(S1): 104-110 . 百度学术
22. 王林峰,姚昌银,杨培丰,宋男男,邹政. 基于离散元方法斜碰落石冲击力的数值研究. 科学技术与工程. 2017(34): 17-23 . 百度学术
其他类型引用(21)
-