含NaCl超细水雾对不同阻塞率管道内爆炸的抑制

贾海林 项海军 李第辉 翟汝鹏

贾海林, 项海军, 李第辉, 翟汝鹏. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制[J]. 爆炸与冲击, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268
引用本文: 贾海林, 项海军, 李第辉, 翟汝鹏. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制[J]. 爆炸与冲击, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268
JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268
Citation: JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268

含NaCl超细水雾对不同阻塞率管道内爆炸的抑制

doi: 10.11883/bzycj-2019-0268
基金项目: 国家重点研发计划(2018YFC0807900);国家自然科学基金(51304069);教育部创新团队发展支持计划(IRT_16R22)
详细信息
    作者简介:

    贾海林(1980- ),男,博士,副教授,jiahailin@hpu.edu.cn

  • 中图分类号: O389; X932

Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride

  • 摘要: 针对长距离输气管道频发的爆炸问题,在自行搭建的水平透明管道平台中开展了含NaCl超细水雾对不同阻塞率管道爆炸特性的影响研究。通过对瓦斯爆炸压力、火焰传播速度等特征参数进行分析,探究含NaCl超细水雾与不同阻塞率泄压口对爆炸特性的影响规律。结果表明:仅在不同阻塞率(0、0.2、0.4和0.6)的泄压口作用下的管道瓦斯爆炸,爆炸超压随着管道阻塞率的增大而增强,阻塞率与火焰锋面传播至管道末端时间呈非线性关系,在阻塞率为0.2时火焰平均速度最快;两者共同作用下,雾通量为8.4 mL、质量分数为8%的NaCl超细水雾阻火抑爆效果最佳,最大爆炸压力下降幅度可达59.2%;含NaCl超细水雾直接作用于爆炸火焰从而抑制爆炸传播。
  • 图  1  实验系统

    Figure  1.  The experimental system

    图  2  超声雾化过程

    Figure  2.  Ultrasonic atomization process

    图  3  不同阻塞率对爆炸压力的影响

    Figure  3.  Influence of different blocking ratios on explosion pressure

    图  4  不同阻塞率下火焰锋面位置的变化

    Figure  4.  Flame front position varying with time at different blocking ratios

    图  5  不同阻塞率下管道B内火焰速度的变化

    Figure  5.  Flame speed in pipe B varying with time at different blocking ratios

    图  6  火焰平均速度和最大爆炸压力与阻塞率的变化关系

    Figure  6.  Average flame speed and maximum explosion pressure varying with blocking ratio

    图  7  含NaCl超细水雾对不同阻塞率下爆炸压力的影响

    Figure  7.  Effect of ultrafine water mist containing NaCl on explosion overpressure for different blocking ratios

    图  8  含NaCl质量分数为8%的超细水雾作用下不同阻塞率火焰锋面位置变化

    Figure  8.  Change in flame front positions for different blocking ratios under the action of ultrafine water mist containing NaCl with the mass fraction of 8%

    图  9  不同阻塞率下超细水雾对最大爆炸压力的影响

    Figure  9.  Effect of ultrafine water mist on the maximum explosion pressure at different blocking ratios

    图  10  不同阻塞率下超细水雾对火焰平均速度影响

    Figure  10.  Effect of ultrafine water mist on the average flame speed at different blocking ratios

    图  11  含NaCl超细水雾作用下火焰图像

    Figure  11.  Flame image with the action of ultrafine water mist containing NaCl

  • [1] YIN W T, FU G, YANG C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000-2014 [J]. Safety Science, 2017, 92: 173–179. DOI: 10.1016/j.ssci.2016.09.018.
    [2] ZHOU F B, XIA T Q, WANG X X, et al. Recent developments in coal mine methane extraction and utilization in China: A review [J]. Journal of Natural Gas Science and Engineering, 2016, 31: 437–458. DOI: 10.1016/j.jngse.2016.03.027.
    [3] BUNDY M, HAMINS A, LEE K Y. Suppression limits of low strain ratio non-premixed methane flames [J]. Combustion and Flame, 2003, 133(3): 299–310. DOI: 10.1016/S0010-2180(03)00012-9.
    [4] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [5] 余明高, 安安, 游浩. 细水雾抑制管道瓦斯爆炸的实验研究 [J]. 煤炭学报, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    YU M G, AN A, YOU H. Experimental study on inhibiting the gas explosion by water spray in tube [J]. Journal of China Coal Society, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [6] 李永怀, 蔡周全. Φ700 mm管道超细水雾抑制瓦斯爆炸实验研究 [J]. 煤炭科学技术, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.

    LI Y H, CAI Z Q. Experimental research on fine water spray in 700 mm diameter pipeline to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.
    [7] JIANG B Y, LIU Z G, TANG M Y, et al. Active suppression of premixed methane/air explosion propagation by nonpremixed suppressant with nitrogen and abc powder in a semi-confined duct [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 141–149. DOI: 10.1016/j.jngse.2016.01.004.
    [8] KOROSTELEV V G. Aerosol-generating pyrotechnic compositions with components interacting in the combustion wave [J]. Combustion, Explosion and Shock Waves, 2005, 41(3): 315–318. DOI: 10.1007/s10573-005-0037-8.
    [9] CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube [J]. Shock Waves, 2005, 14(3): 161–166. DOI: 10.1007/s00193-005-0259-4.
    [10] 马凯, 马志鹏, 张巨峰, 等. 泡沫陶瓷结构内瓦斯爆炸反应的断链 [J]. 矿业工程研究, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.

    MA K, MA Z P, ZHANG J F, et al. Chain scission of gas explosion reaction in foam ceramics [J]. Mineral Engineering Research, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.
    [11] 余明高, 孔杰, 王燕, 等. 改性赤泥粉体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.

    YU M G, KONG J, WANG Y, et al. Experimental research on gas explosion suppression by modified red mud [J]. Journal of China Coal Society, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.
    [12] 程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.

    CHEN F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
    [13] SONG Y F, ZHANG Q. Quantitative research on gas explosion inhibition by water mist [J]. Journal of Hazardous Materials, 2019, 363: 16–25. DOI: 10.1016/j.jhazmat.2018.09.059.
    [14] 林滢. 瓦斯爆炸水系抑制剂的实验研究[D]. 西安: 西安科技大学, 2006: 46.
    [15] 陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.

    CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.
    [16] JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58(2): 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
    [17] CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2016, 324(B): 489–497. DOI: 10.1016/j.jhazmat.2016.11.017.
    [18] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [19] CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/ j.jlp.2016.06.012.
    [20] AJRASH M J, ZANGANEH J, MOGHTADERI B. Flame deflagration in side-on vented detonation tubes: a large scale study [J]. Journal of Hazardous Materials, 2018, 345: 38–47. DOI: 10.1016/j.jhazmat.2017.11.014.
    [21] XIAO H, WANG Q, SHEN X, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. DOI: 10.1016/j.ijhydene.2013.05.003.
    [22] LI Q, LIN B, JIAN C. Investigation on the interactions of gas explosion flame and reflected pressure waves in closed pipes [J]. Combustion Science and Technology, 2012, 184(12): 2154–2162. DOI: 10.1080/00102202.2012.705190.
    [23] ZHANG Q, PANG L, LIANG H M. Effect of scale on the explosion of methane in air and its shockwave [J]. Journal of Loss Prevention in the Process Industries, 2011, 24(1): 43–48. DOI: 10.1016/j.jlp.2010.08.011.
    [24] NFPA 750. Standard for the installation of water mist fire protection systems [S].1996 Edition. National Fire Protection Association, Quincy, MA, 2000. https://catalog.nfpa.org/NFPA 750 Standard on Water Mist Fire Protection Systems P1366.aspx.
    [25] 徐景德, 周心权, 吴兵. 瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析 [J]. 煤炭科学技术, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.

    XU J D, ZHOU X Q, WU B. Experimental analysis on gas density and fire resource affected to expansion of gas explosion [J]. Coal Science and Technology, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.
    [26] 秦文茜, 王喜世, 谷睿, 等. 超细水雾作用下瓦斯的爆炸压力及升压速率 [J]. 燃烧科学与技术, 2012, 18(1): 90–95.

    QIN W Q, WANG X S, GU R, et al. Methane explosion overpressure and overpressure rise rate with suppression by ultra-fine water mist [J]. Journal of Combustion Science and Technology, 2012, 18(1): 90–95.
    [27] 李铮. 瓦斯爆炸及其细水雾抑制的实验研究[D]. 大连: 大连理工大学, 2011: 52−57.
    [28] 张鹏鹏. 超细水雾增强与抑制瓦斯爆炸的实验研究[D]. 大连: 大连理工大学, 2013: 41−48.
  • 加载中
图(11)
计量
  • 文章访问数:  4969
  • HTML全文浏览量:  2105
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 修回日期:  2019-11-05
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回