长杆弹撞击陶瓷靶的一种数值模拟方法

伍一顺 陈小伟

伍一顺, 陈小伟. 长杆弹撞击陶瓷靶的一种数值模拟方法[J]. 爆炸与冲击, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291
引用本文: 伍一顺, 陈小伟. 长杆弹撞击陶瓷靶的一种数值模拟方法[J]. 爆炸与冲击, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291
WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291
Citation: WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291

长杆弹撞击陶瓷靶的一种数值模拟方法

doi: 10.11883/bzycj-2019-0291
基金项目: 国家自然科学基金(11627901,11872118)
详细信息
    作者简介:

    伍一顺(1996- ),男,硕士研究生,610576167@qq.com

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O347

A numerical simulation method for long rods penetrating into ceramic targets

  • 摘要: 陶瓷材料具有高强度和低密度等特点,抗弹性能优越,被广泛用于各类装甲中。长杆弹撞击陶瓷靶时会发生径向流动、质量显著侵蚀而无明显侵彻的界面击溃现象,是陶瓷抗侵彻性能研究中具有重要研究价值的特殊现象。利用有限元软件AUTODYN建立了长杆弹撞击陶瓷靶的二维轴对称计算模型,采用Lagrange和光滑粒子流体动力学(smooth particle hydrodynamics, SPH)算法,模拟了柱形钨合金长杆弹撞击带盖板的碳化硅陶瓷,通过改变长杆弹的撞击速度,得到了界面击溃、驻留转侵彻和直接侵彻3个不同现象。讨论了不同建模算法、边界条件以及材料参数对模拟结果的影响。通过网格收敛性验证和与实验结果进行拟合,综合验证了计算模型中算法、边界条件和参数设定的可靠性。结果表明,在建模中若同时使用SPH算法和Lagrange算法,需要考虑粒子和网格大小对于模拟结果的影响。针对长杆弹撞击陶瓷靶的界面击溃模拟,不建议对陶瓷材料采用SPH粒子建模。相关建模和参数选择方法对后续陶瓷抗侵彻/界面击溃的数值模拟具有重要的指导意义。
  • 图  1  实验装置和简化计算模型(单位为mm)

    Figure  1.  The experimental device and the simplified calculation model (unit in mm)

    图  2  JH-1模型中应力、应变和压力的关系[23]

    Figure  2.  The relations of stress and strain to pressure in the JH-1 model[23]

    图  3  边界条件设置

    Figure  3.  Boundary condition settings

    图  4  盖板模拟的两种方案对应的模拟结果

    Figure  4.  Simulation results by two different schemes for cover plug modelling

    图  5  陶瓷靶板采用不同算法建模计算结果

    Figure  5.  Simulation results of ceramic damage using different algorithm modelling

    图  6  长杆侵彻陶瓷靶模拟图和弹头放大图

    Figure  6.  Simulated penetration of a long rod into a ceramic target as well as the magnified view of the projectile nose

    图  7  算例1~3模拟结果图及相关实验结果

    Figure  7.  Simulation results in Cases 1−3 and related experimental result

    图  8  采用修正J-C失效模型的模拟结果和弹头放大图

    Figure  8.  Simulation result using the J-C modified model and the magnified view of the projectile nose

    图  9  不同撞击速度下在SiC靶中的侵彻深度

    Figure  9.  Depth of penetration (DOP) into SiC targetsat different impact velocities

    图  10  界面击溃模拟结果

    Figure  10.  Simulated interface defeat

    图  11  驻留转侵彻模拟结果

    Figure  11.  Simulated transition from dwell to penetration

    图  12  直接侵彻模拟结果

    Figure  12.  Simulated direct penetration

    表  1  碳化硅的材料参数[23]

    Table  1.   Material parameters for SiC[23]

    ρ0/(g·cm−3)K1/GPaK2/GPaT1/GPaG/GPaσHEL/GPaσ1/GPap1/GPaσ2/GPa
    3.21522036122019311.77.12.512.2
    p2/GPaC${\sigma _{{\rm{f}},{\rm{max}}}}$/GPaασt/GPa${\sigma _{{\rm{f}},{\rm{max}}}}$p3/GPaβ
    100.0091.300.4-0.750.699.751
    下载: 导出CSV

    表  2  钨合金和4340钢的材料参数[22, 26]

    Table  2.   Material parameters for tungsten alloy and 4340 steel[22, 26]

    材料ρ0/(g·cm−3)状态方程K/GPaγc0/(km·s−1)s
    钨合金17.600Shock2851.5404.0291.237
    4340钢7.830Linear159
    材料T0/Kcp/(J·kg−1·K−1)强度模型G/GPaA/GPaB/GPa
    钨合金300134J-C模型1601.5060.177
    4340钢300477J-C模型770.7920.510
    材料nZmTm/K${\dot \varepsilon _0}$/s−1
    钨合金0.1200.0161.0001.723×1031.000
    4340钢0.2600.0141.0301.793×1031.000
    材料失效模型D1D2D3D4D5
    钨合金J-C0.1603.130−2.0400.0070.370
    4340钢J-C0.0503.440−2.1200.0030.610
    下载: 导出CSV

    表  3  MAR350钢的材料参数[20]

    Table  3.   Material parameters for MAR350 steel[20]

    ρ0/(g·cm−3)K/GPaG/GPaσy/GPaεf
    8.08140772.60.4
    下载: 导出CSV

    表  4  网格收敛性模拟结果

    Table  4.   Simulation results of mesh convergence

    粒子大小/mm网格收敛性
    网格与粒子尺寸之比为0.5网格与粒子尺寸之比为1网格与粒子尺寸之比为2
    0.125驻留转侵彻驻留转侵彻始终保持界面击溃
    0.100无界面击溃驻留转侵彻始终保持界面击溃
    0.050无界面击溃驻留转侵彻始终保持界面击溃
    下载: 导出CSV

    表  5  J-C失效模型参数[26-27]

    Table  5.   Damage parameters in the J-C models[26-27]

    失效模型D1D2D3D4D5
    J-C失效(Lee)00.33−1.5000
    J-C失效(修正)0.163.13−2.040.0070.370
    下载: 导出CSV
  • [1] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
    [2] WIKINS W L. Second progress report of light armor program: UCRL-50349 [R]. Livermore, CA, USA: Livermore National Laboratory, 1964.
    [3] HAUVER G, GOOCH W, NETHERWOOD P, et al. Variation of target resistance during long-rod penetration into ceramics [C] // The 13th International Symposium on Ballistics. Sundyberg, Sweden, 1992: 257−264.
    [4] ROSEBERG Z, TSALIAH J. Applying Tate's model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [5] ANDERSON Jr C E, WALKER J D. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering, 2005, 31(9): 1119–1132. DOI: 10.1016/j.ijimpeng.2004.07.013.
    [6] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9.
    [7] LUNDBERG P, LUNDBERG B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials [J]. International Journal of Impact Engineering, 2005, 31(7): 781–792. DOI: 10.1016/j.ijimpeng.2004.06.003.
    [8] LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of conical tungsten projectiles on flat silicon carbide targets: transition from interface defeat to penetration [J]. International Journal of Impact Engineering, 2006, 32(11): 1842–1856. DOI: 10.1016/j.ijimpeng.2005.04.004.
    [9] LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets [J]. Journal of Applied Mechanics, 2013, 80(3): 979–985. DOI: 10.1115/1.4023345.
    [10] LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets [J]. Defence Technology, 2016, 12(3): 263–271. DOI: 10.1016/j.dt.2016.02.002.
    [11] BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Interface defeat for unconfined SiC ceramics [C] // The 24th International Symposium on Ballistics. New Orleans, 2008: 298−306.
    [12] BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Penetration dynamics and interface defeat capability of silicon carbide against long Rod impact [J]. International Journal of Impact Engineering, 2011, 38(6): 419–425. DOI: 10.1016/j.ijimpeng.2010.10.011.
    [13] ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting oblique silicon carbide [C] // The 26th International Symposium on Ballistics. Miami, Fl, USA, 2011, 81(6): 1728−1735. DOI: 10.1007/978-3-642-19665-2_4.
    [14] LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83(8): 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
    [15] LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
    [16] LI J C, CHEN X W. Theoretical analysis of projectile-target interface defeat and transition to penetration by long rods due to oblique impacts of ceramic targets [J]. International Journal of Impact Engineering, 2017, 106(10): 53–63. DOI: 10.1016/j.ijimpeng.2017.03.013.
    [17] 谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.

    TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
    [18] 谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.

    TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.
    [19] HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903.
    [20] QUAN X, CLEGG R A, COWLER M S, et al. Numerical simulation of long rods impacting silicon carbide targets using JH-1 model [J]. International Journal of Impact Engineering, 2006, 33(1): 634–644. DOI: 10.1016/j.ijimpeng.2006.09.011.
    [21] GOH W L, ZHENG Y, YUAN J, et al. Effects of hardness of steel on ceramic armor module against long rod impact [J]. International Journal of Impact Engineering, 2017, 109(11): 419–426. DOI: 10.1016/j.ijimpeng.2017.08.004.
    [22] CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84(8): 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
    [23] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings. USA: American Institute of Physics, 1994, 309(1): 981−984. DOI: 10.1063/1.46199.
    [24] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26] 郎林, 陈小伟, 雷劲松. 长杆和分段杆侵彻的数值模拟 [J]. 爆炸与冲击, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.

    LANG L, CHEN X W, LEI J S. Numerical simulations on long rods and segmented rods penetrating into steel target [J]. Explosion and Shock Waves, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.
    [27] LEE J K. Analysis of multi-layered materials under high velocity impact using CTH [D]. Ohio: Air Force Institute of Technology, 2008: 32−33.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  6073
  • HTML全文浏览量:  3137
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回