高温作用下钢管混凝土构件侧向撞击性能

史艳莉 纪孙航 王文达 郑龙

史艳莉, 纪孙航, 王文达, 郑龙. 高温作用下钢管混凝土构件侧向撞击性能[J]. 爆炸与冲击, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293
引用本文: 史艳莉, 纪孙航, 王文达, 郑龙. 高温作用下钢管混凝土构件侧向撞击性能[J]. 爆炸与冲击, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293
SHI Yanli, JI Sunhang, WANG Wenda, ZHENG Long. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion And Shock Waves, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293
Citation: SHI Yanli, JI Sunhang, WANG Wenda, ZHENG Long. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion And Shock Waves, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293

高温作用下钢管混凝土构件侧向撞击性能

doi: 10.11883/bzycj-2019-0293
基金项目: 国家自然科学基金(51778274);甘肃省高等学校协同创新团队(2018C-08);兰州市科技计划项目(2019-1-61)
详细信息
    作者简介:

    史艳莉(1977- ),女,博士,副教授,ceshiyl@163.com

    通讯作者:

    王文达(1976- ),男,博士,教授,wangwd@lut.edu.cn

  • 中图分类号: O383; TU398

The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures

  • 摘要: 通过耦合ABAQUS有限元软件中的隐式静态分析和显示动态分析,提出钢管混凝土构件在火灾与撞击联合作用下的数值计算方法,分别对已有钢管混凝土构件的温度场试验、火灾下轴向撞击试验和常温下侧向撞击试验进行数值模拟,以验证本文方法的合理性。在此基础上建立了钢管混凝土构件在不同温度下的侧向撞击有限元模型,分别对不同温度下的挠度和撞击力时程曲线进行对比,采用极值后平均撞击力和吸能系数对高温作用下构件的抗侧向撞击性能进行量化分析,并分析了600 ℃下构件撞击全过程。结果表明:温度对钢管混凝土构件的侧向撞击性能影响明显,随着温度升高,构件跨中挠度大幅增加,撞击时程变长;高温下构件的撞击力时程曲线与常温下差异明显,高温下曲线可分为震荡阶段、下降阶段和卸载阶段;构件主要通过整体弯曲变形吸收落锤的动能,随着温度升高,极值后平均撞击力和吸能系数逐渐降低,表明构件的抗撞击性能逐渐降低,当温度超过400 ℃后,构件抗撞击性能损失严重。
  • 图  1  火灾与撞击的耦合过程

    Figure  1.  Coupling process of fire and impact action

    图  2  温度场试验结果与模拟结果对比

    Figure  2.  Comparison of temperature field between tested and calculated results

    图  3  试件的边界条件

    Figure  3.  Boundary condition of the specimen

    图  4  试验与模拟的撞击力时程曲线对比

    Figure  4.  Comparison between experimental and calculated time-history curves of impact force

    图  5  试验与数值模拟撞击力时程曲线比较

    Figure  5.  Comparison between tested and calculated time history curves of impact force

    图  6  跨中挠度实测值与计算值对比

    Figure  6.  Comparison between tested and calculated mid-span deflections

    图  7  破坏形态对比

    Figure  7.  Comparison of the failure modes

    图  8  边界条件及网格划分

    Figure  8.  Boundary conditions and meshing

    图  9  不同温度下构件的温度分布

    Figure  9.  Temperature distributions of the members at different temperatures

    图  10  不构件的跨中挠度(u)时程曲线

    Figure  10.  Time history curves of mid-span deflection (u) for different members

    图  11  不同温度下的撞击力时程曲线

    Figure  11.  Impact force versus time curves at different temperatures

    图  12  试件CC1和SS1的平均撞击力(PmFpe)

    Figure  12.  Average impact force (Pm, Fpe) of the members CC1 and SS1

    图  13  不同温度下撞击力-挠度关系曲线

    Figure  13.  Impact force versus deflection curves at different temperatures

    图  14  不同温度下构件的极值后平均撞击力

    Figure  14.  The post-extremum equal impact force of the members at different temperatures

    图  15  不同温度下构件吸收的能量Eg

    Figure  15.  Energy absorbed by members (Eg) at different temperatures

    图  16  构件的吸能系数

    Figure  16.  Energy absorption capacity () of the members

    图  17  撞击力、跨中挠度和跨中速度时程曲线

    Figure  17.  Time history curves of impact force, deflection and velocity at mid-span

    图  18  钢管与核心混凝土纵向应力(S22应力)

    Figure  18.  Longitudinal stress (S22) of steel tube and core concrete

    表  1  试件温度场信息表

    Table  1.   The information of temperature field for the specimens

    构件编号d/mm$\varDelta $/mms1/mms2/mms3/mm
    S1219.04.78026 52
    S2355.66.35086172
    S3323.96.35078155
    下载: 导出CSV

    表  2  试件试验信息表

    Table  2.   Information of the tested specimens

    编号d/mm$\varDelta $/mmL/mm边界条件速度/
    (m∙s−1)
    质量/kg
    CC11803.651 940固支9.21465
    CC21803.651 940固支6.40920
    CC31803.651 940固支9.66465
    SS11803.652 800简支8.05465
    SS21803.652 800简支5.69920
    SS31803.652 800简支8.93465
    下载: 导出CSV

    表  3  构件基本参数与结果

    Table  3.   Parameters and results of the members

    构件编号T/℃Eg/kJEi/Egtmax/sFpe/kNμumax/mmut,max/mm
    C066 2010.690.890.024227.7168.849.451.2
    C26620011.030.920.025222.0154.953.856.2
    C46640011.250.940.030192.4129.964.567.0
    C66660011.090.930.040137.9 96.787.790.6
    下载: 导出CSV
  • [1] XI F, LI Q M, TAN Y H. Dynamic response and critical temperature of a steel beam subjected to fire and subsequent impulsive loading [J]. Computers and Structures, 2014, 135: 100–108. DOI: 10.1016/j.compstruc.2014.01.014.
    [2] RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009.
    [3] TAN Y H, XI F, LI S C, et al. Pulse shape effects on the dynamic response of a steel beam under combined action of fire and explosion loads [J]. Journal of Constructional Steel Research, 2017, 139: 484–492. DOI: 10.1016/j.jcsr.2017.10.001.
    [4] YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
    [5] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [6] 韩林海. 钢管混凝土结构: 理论与实践[M]. 3版. 北京: 科学出版社, 2016.
    [7] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
    [8] HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [9] 王蕊, 李珠, 任够平, 等. 钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟 [J]. 土木工程学报, 2007, 40(10): 34–40. DOI: 10.3321/j.issn:1000-131x.2007.10.006.

    WANG R, LI Z, REN G P, et al. Experimental study and numerical simulation of the dynamic response of concrete filled steel tubes under lateral impact load [J]. China Civil Engineering Journal, 2007, 40(10): 34–40. DOI: 10.3321/j.issn:1000-131x.2007.10.006.
    [10] WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: experimental study [J]. Thin-Walled Structures, 2015, 95: 363–373. DOI: 10.1016/j.tws.2015.06.022.
    [11] WANG R, HAN L H, ZHAO X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101: 129–140. DOI: 10.1016/j.tws.2015.12.006.
    [12] HU M C, HAN L H, HOU C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: analytical behaviour [J]. Journal of Constructional Steel Research, 2018, 146: 135–154. DOI: 10.1016/j.jcsr.2018.03.017.
    [13] 史艳莉, 何佳星, 王文达, 等. 内配圆钢管的圆钢管混凝土构件耐撞性能分析 [J]. 振动与冲击, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.

    SHI Y L, HE J X, WANG W D, et al. Anti-impact performance analysis for circular CFST members with inner circular steel tube [J]. Journal of Vibration and Shock, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.
    [14] 史艳莉, 鲜威, 王蕊, 等. 方套圆中空夹层钢管混凝土组合构件横向撞击试验研究 [J]. 土木工程学报, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.

    SHI Y L, XIAN W, WANG R, et al. Experimental study on circular-in-square concrete filled double-skin steel tubular (CFDST) composite components under lateral impact [J]. China Civil Engineering Journal, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.
    [15] HUO J S, ZHENG Q, CHEN B S, et al. Tests on impact behaviour of micro-concrete-filled steel tubes at elevated temperatures up to 400 ℃ [J]. Materials and Structures, 2009, 42(10): 1325–1334. DOI: 10.1617/s11527-008-9452-0.
    [16] HUO J S, HE Y M, CHEN B S. Experimental study on impact behaviour of concrete-filled steel tubes at elevated temperatures up to 800 ℃ [J]. Materials and Structures, 2014, 47(1−2): 263–283. DOI: 10.1617/s11527-013-0059-8.
    [17] CHEN W X, LUO L S, GUO Z K, et al. Strain rate effects on dynamic strength of high temperature-damaged RPC-FST [J]. Journal of Constructional Steel Research, 2018, 147: 324–339. DOI: 10.1016/j.jcsr.2018.04.025.
    [18] 霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.

    HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
    [19] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
    [20] LIE T T, CHABOT M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete: NRC-IRC-4196[R]. Ottawa: National Research Council of Canada, 1992. DOI: 10.4224/20358480.
    [21] WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact [J]. International Journal of Impact Engineering, 2014, 72: 1–16. DOI: 10.1016/j.ijimpeng.2014.05.004.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  5112
  • HTML全文浏览量:  2694
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回