Effects of medium and static pressure on dynamic characteristics of piezoresistive absolute pressure sensor calibrated by shock tube
-
摘要: 激波管通常用于动态压力传感器的校准,压阻式绝压传感器在激波管校准过程当中,会出现谐振频率等动态性能指标随着激波管静态压力环境、气体介质变化而改变的情况,影响传感器动态特性的校准。基于压阻式传感器的工作原理,对传感器的敏感膜片结构进行了机理分析,建立了膜片结构与校准环境中介质和静压关系的动态模型;通过ANSYS与SIMULINK软件开展了数值模拟验证工作,模拟结果与理论推导一致。通过激波管校准实验验证了气体介质与静压的影响关系,结果表明:传感器的谐振频率与静压间存在非线性关系,并且随着敏感膜片径厚比的增大而显著增大;系统阻尼比大小与气体介质有关,随着气体密度的降低而升高;传感器的灵敏度与气体介质和静压无太大直接关系。在使用激波管校准压阻式绝压传感器时,应当考虑介质与静压参数对校准结果的影响。Abstract: Shock tube was usually used to calibrate the dynamic pressure sensor. During the calibration process of shock tube, the dynamic performance indexes of piezoresistive absolute pressure sensor, such as resonance frequency, depend on both the static pressure environment and gas medium of shock tube, affecting the calibration of dynamic characteristics of the sensor. Based on the working principle of piezoresistive pressure sensor, the mechanism of the sensing diaphragm structure was analyzed and a dynamic model was established. The numerical simulations using ANSYS and SIMULINK softwares have been performed and the simulation results are consistent with the theoretical predications. The results indicated that there was a non-linear relationship between the resonant frequency and the static pressure of the sensor, and it increased significantly with the increase of the diameter-thickness ratio of the sensing diaphragm. The damping ratio coefficient was related to the gas medium and increased with the decrease of gas density. The sensitivity of the sensor was related to neither the gas medium nor the static pressure. The effects of medium and static pressure parameters on the calibration of piezoresistive absolute pressure sensor should be considered.
-
表 1 实验结果
Table 1. Experimental results
实验 绝对压力p1/kPa 膜片厚度/mm 平台时间/ms Δp5/kPa 传感器输出/mV 灵敏度/(mV·kPa−1) 谐振频率/kHz 阻尼比系数 1 3.6 0.1 8.7 2.6 5.89 2.26 159.4 0.000 14 2 3.6 0.1 8.7 2.5 5.68 2.27 159.4 0.000 14 3 3.4 0.1 8.6 2.2 5.12 2.32 159.2 0.000 13 4 12.8 0.1 10.1 3.6 8.23 2.28 159.6 0.000 18 5 33.9 0.1 10.7 5.1 12.03 2.35 160.0 0.000 35 6 33.9 0.2 10.2 7.5 17.23 2.30 160.0 0.000 39 7 33.8 0.3 9.8 13.2 30.43 2.31 160.1 0.000 38 8 33.9 0.6 8.5 21.5 48.78 2.27 160.1 0.000 47 9 101.3 0.3 10.6 13.8 31.43 2.27 162.5 0.000 89 10 101.3 0.3 12.6 13.9 31.27 2.25 162.8 0.000 34 -
[1] The Instrumentation, Systems, and Automation Society. A guide for the dynamic calibration of pressure transducers: ISA-37.16.01-2002 [S]. USA, 2002: 11−49. [2] 国家质量监督检验检疫总局. 动态压力传感器: JJG624-2005 [S]. 北京: 中国计量出版社, 2006: 1−13. [3] HJELMGREN J. Dynamic measurement of pressure—a literature survey: SP REPORT 2002: 34 [R]. Sweden: SP Swedish National Testing and Research Institute, 2002. [4] JIM L, DAN C. Dynamic pressure calibration: TN-15-0205 [R]. USA: PCB Piezotronics Technical Note, 2005. [5] 王文襄, 王冰, 邱江. 压阻式高频动态压力传感器与冲击波超压测量 [C] // 中国力学学会. 第十二届全国激波与激波管学术会议论文集. 洛阳, 2006: 299−304. [6] 杨凡, 孔德仁, 姜波, 等. 基于激波管校准的冲击波压力传感器动态特性研究 [J]. 南京理工大学学报(自然科学版), 2017, 41(3): 330–336.YANG F, KONG D R, JIANG B, et al. Dynamic characteristic of shock wave pressure sensor based on shock tube calibration [J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 330–336. [7] 葛竹, 马铁华, 杜红棉, 等. 不同驱动气体对激波管校准系统特性的影响分析 [J]. 中国测试, 2017, 43(8): 125–128. DOI: 10.11857/j.issn.1674-5124.2017.08.025.GE Z, MA T H, DU H M, et al. Effects of different driving gases on the characteristics of shock tube calibration system [J]. China Measurement & Testing Technology, 2017, 43(8): 125–128. DOI: 10.11857/j.issn.1674-5124.2017.08.025. [8] 刘珍妮, 谭晓兰, 杨峻松. 一种硅微压阻式压力传感器的研究 [J]. 机械设计与制造, 2012(1): 103–105. DOI: 10.3969/j.issn.1001-3997.2012.01.039.LIU Z N, TAN X L, YANG J S. Research on a micro piezoresistive pressure sensor [J]. Machinery Design & Manufacture, 2012(1): 103–105. DOI: 10.3969/j.issn.1001-3997.2012.01.039. [9] 袁希光. 传感器技术手册[M]. 北京: 国防工业出版社, 1986: 420−463. [10] 袁方超, 李舜酩. SiC压阻式压力传感器感应膜片热-结构耦合分析 [J]. 重庆理工大学学报, 2016, 30(1): 26–31. DOI: 10.3969/j.issn.1674-8425(z).2016.01.005.YUAN F C, LI S M. Thermal-structure coupling analysis of sensing diaphragm of piezoresistive silicon carbide pressure sensor [J]. Journal of Chongqing Institute of Technology, 2016, 30(1): 26–31. DOI: 10.3969/j.issn.1674-8425(z).2016.01.005. [11] 杨峻松, 谭晓兰, 刘珍妮, 等. 硅压阻式传感器的优化分析 [J]. 北方工业大学学报, 2011, 23(3): 29–36. DOI: 10.3969/j.issn.1001-5477.2011.03.006.YANG J S, TAN X L, LIU Z N, et al. Analysis of index of silicon piezoresistance micro pressure sensor [J]. Journal of North China University of Technology, 2011, 23(3): 29–36. DOI: 10.3969/j.issn.1001-5477.2011.03.006. [12] 严子林. 碳化硅高温压力传感器设计与工艺实验研究[D]. 北京: 清华大学, 2011: 11−18. [13] LI X, ZHANG L, YANG S M. Modeling of dynamic pressure measurement system and signal reconstruction by deconvolution [C] // Proceeding of International Symposium on Pressure and Vacuum (ISPV’2003). Beijing, 2003: 132−135. [14] BEAN V E, BOWERS W J, HURST W S, et al. Development of a primary standard for the measurement of dynamic pressure and temperature [J]. Metrologia, 1994, 30(6): 747–750. DOI: 10.1088/0026-1394/30/6/039. 期刊类型引用(7)
1. 苏晓杰,续晗,翁春生,倪晓冬,肖博文,郑权. 粉末爆轰发动机的粉末燃料供应特性研究. 推进技术. 2022(10): 418-426 . 百度学术
2. 刘国秋,孙宇航,高明,桂柯. 铝粉燃料火箭发动机的爆轰特性研究. 科技风. 2021(16): 175-176 . 百度学术
3. 刘龙,夏智勋,黄利亚,?马立坤,那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报. 2019(24): 216-226 . 百度学术
4. 刘龙,夏智勋,黄利亚. 气相氛围中悬浮粉末燃料爆震燃烧研究进展. 宇航学报. 2018(03): 239-248 . 百度学术
5. 陈曦,陈先锋,张洪铭,刘晅亚,张英,牛奕,胡东涛. 惰化剂粒径对铝粉火焰传播特性影响的实验研究. 爆炸与冲击. 2017(04): 759-765 . 本站查看
6. 韦伟,翁春生. 以铝粉为燃料的脉冲爆轰发动机数值研究. 固体火箭技术. 2017(01): 37-40+59 . 百度学术
7. 韦伟,翁春生. 基于三维两相CE/SE方法的点火位置对固体燃料PDE的影响研究. 弹道学报. 2016(03): 65-70 . 百度学术
其他类型引用(4)
-