B炸药慢速烤燃过程的流变特性

周捷 智小琦 王帅 郝春杰

周捷, 智小琦, 王帅, 郝春杰. B炸药慢速烤燃过程的流变特性[J]. 爆炸与冲击, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321
引用本文: 周捷, 智小琦, 王帅, 郝春杰. B炸药慢速烤燃过程的流变特性[J]. 爆炸与冲击, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321
ZHOU Jie, ZHI Xiaoqi, WANG Shuai, HAO Chunjie. Rheological properties of Composition B in slow cook-off process[J]. Explosion And Shock Waves, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321
Citation: ZHOU Jie, ZHI Xiaoqi, WANG Shuai, HAO Chunjie. Rheological properties of Composition B in slow cook-off process[J]. Explosion And Shock Waves, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321

B炸药慢速烤燃过程的流变特性

doi: 10.11883/bzycj-2019-0321
详细信息
    作者简介:

    周 捷(1995- ),男,硕士研究生,zhoujiepla@foxmail.com

    通讯作者:

    智小琦(1963- ),女,博士,教授,zxq4060@sina.com

  • 中图分类号: O381; TJ55

Rheological properties of Composition B in slow cook-off process

  • 摘要: 为进一步探究熔铸炸药在烤燃过程中内部各物理场的变化情况,以B炸药为研究对象,完整地建立了基于Bingham流体模型的B炸药黏度计算模型并应用于慢速烤燃的数值模拟。通过数值模拟得到了B炸药在整个升温过程中上中下3个内部测点处的温度变化曲线并以烤燃试验加以验证,观察了弹体内部温度场与对流场的变化特点。结果表明:升温速率为1 ℃/min时,B炸药相变后逐渐开始流动,内部的温度场分布也随之改变,炸药出现自热反应与最终响应的区域都在弹体上部;升温速率为0.055 ℃/min时,炸药相变后内部很长时间内仍表现出类固相温度场的分布特点,当炸药出现自热反应后,才逐渐开始流动,温度场也逐渐转变为典型的液相温度场,炸药最终响应点在弹体上部,但最早出现自热反应的区域在弹体中心。
  • 图  1  数值模拟模型示意图

    Figure  1.  A geometric model for numerical simulation

    图  2  1 ℃/min升温速率下模拟各点温度变化曲线

    Figure  2.  Simulated temperature curves at different points for the heating rate of 1 ℃/min

    图  3  0.055 ℃/min升温速率下模拟各点温度变化曲线

    Figure  3.  Simulated temperature curves at different points for the heating rate of 0.055 ℃/min

    图  4  1 ℃/min升温速率下弹体内部温度场变化过程

    Figure  4.  Changes of temperature field inside the projectile body at the heating rate of 1 ℃/min

    图  5  0.055 ℃/min升温速率下弹体内部温度场变化过程

    Figure  5.  Changes of temperature field inside the projectile body at the heating rate of 0.055 ℃/min

    图  6  流场平均速度变化曲线

    Figure  6.  Average velocity curve of flow field

    图  7  1 ℃/min升温速率下自热反应前后B炸药内部速度矢量

    Figure  7.  Velocity victors inside the Comp-B before and after self-heating at heating rate of 1 ℃/min

    图  8  0.055 ℃/min升温速率下自热反应前后B炸药内部速度矢量图

    Figure  8.  Velocity victors inside the Comp-B before and after self-heating at heating rate of 0.055 ℃/min

    图  9  烤燃弹与加热装置

    Figure  9.  Cook-off bomb and heating devices

    图  10  响应后的残骸

    Figure  10.  Scraps after response

    图  11  1 ℃/min升温速率下实测各点温度变化曲线

    Figure  11.  Measured temperature curves of different points at the heating rate of 1 ℃/min

    图  12  0.055 ℃/min升温速率下实测各点温度变化曲线

    Figure  12.  Measured temperature curves of different points at the heating rate of 0.055 ℃/min

    图  13  1 ℃/min升温速率下测点1的计算值与试验值比较

    Figure  13.  Comparisons between calculated and experimental values of point 1 at the heating rate of 1 ℃/min

    图  14  0.055 ℃/min升温速率下测点1的计算值与试验值比较

    Figure  14.  Comparisons between calculated and experimental values of point 1 at the heating rate of 0.055 ℃/min

    表  1  屈服应力阈值计算参数

    Table  1.   Parameters to calculate the yield stress threshold

    φcC/Pan
    0.3366 8742.37
    下载: 导出CSV

    表  2  φmax计算参数

    Table  2.   Calculating parameters of φmax

    φ0φZm
    0.550.7138.730.398
    下载: 导出CSV

    表  3  φ计算参数

    Table  3.   Calculating parameters of φ

    φaABCDTm,RDX/℃
    0.60.042 60.075 30.1340.747 4204
    下载: 导出CSV

    表  4  壳体材料参数

    Table  4.   Material parameters for the shell

    材料密度/(kg∙m−3)比热容/(J∙kg−1)导热系数/(W∙m−1∙K−1)
    45#钢7 85047515
    下载: 导出CSV

    表  5  B炸药物性参数

    Table  5.   Physical parameters of Comp B

    密度/(kg∙m−3)比热容/(J∙kg−1)导热系数/(W∙m−1∙K−1)熔化热/(kJ∙kg−1)相变起始温度Ts/℃相变结束温度T1/℃
    $\begin{array}{*{20}{c}} {1\;690}&{T {\simfont\text{≤}} {T_s}} \\ {1\;690 - 0.675\left( {T - {T_{\rm{s}}}} \right)}&{T {\simfont\text{>}} {T_{\rm{s}}}} \end{array}$1 126$\begin{array}{*{20}{c}} {0.17}&{T {\simfont\text{<}} {T_{\rm{s}}}} \\ {0.17 - 0.025\left( {T - {T_{\rm{m}}}} \right)}&{{T_{\rm{s}}} {\simfont\text{≤}} T {\simfont\text{≤}} {T_{\rm{l}}}} \\ {0.15}&{T {\simfont\text{>}} {T_{\rm{l}}}} \end{array}$1288082
    下载: 导出CSV

    表  6  B炸药化学反应动力学参数

    Table  6.   Chemical kinetic parameters of Comp B

    活化能/(kJ∙mol−1)反应热/(J∙kg−1)指前因子
    225.82×1062.01×1018
    下载: 导出CSV
  • [1] 智小琦. 弹箭炸药装药技术 [M]. 北京: 兵器工业出版社, 2012: 7−8.

    ZHI X Q. Charge technology of explosive on projectile and rocket [M]. Beijing: Ordnance Industry Press, 2012: 7−8.
    [2] HOBBS M L, KANESHIGE M J, ERIKSON W W. Predicting large-scale effects during cookoff of PBXs and melt-castable explosives [C] // Proceedings of the 26th International Colloquium on the Dynamics of Explosions and Reactive Systems. Boston: MA: OSTI, 2017: 152−158.
    [3] MAIENSCHEIN J L, McCLELLAND M A, WARDELL J F, et al. ALE3D model predictions and experimental analysis of the cookoff response of Comp B [C] // Proceedings of Joint Army Navy NASA Air Force (JANNAF) Meeting. Colorado Springs, CO, USA: LLNL, 2003: 51−64.
    [4] GLASCOE E A, DEHAVEN M R, MCCLELLAND M, et al. Mechanisms of Comp-B thermal explosions [C] // Proceedings of the 15th International Detonation Symposium. San Francisco: LLNL, 2014: 376−385.
    [5] NICHOLS A L, SCHOFIELD S. Modeling the response of fluid/melt explosives to slow cook-off [C] // Proceedings of the 15th International Detonation Symposium. San Francisco: LLNL, 2014: 1128−1136.
    [6] FEDOROFF B T, SHEFFIELD O E, KAYE S M. Encyclopedia of explosives and related items [M]. Dover, NJ: Picatinny Arsenal, 1962.
    [7] HOBBS M L, KANESHIGE M J, ANDERSON M U. Cookoff of a melt-castable explosive (COMP-B) [C] // Proceedings of the 27th Propulsion Systems Hazards Joint Subcommittee Meeting. Monterrey: SNL-NM, 2012: 1020−1034.
    [8] SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. DOI: 10.1002/aic.15288.
    [9] NUNEZ M P, ZERKLE D K, ZUCKER J M. The rheology of molten Composition B [R]. NM: Los Alamos, 2012.
    [10] ZERKLE D K, NUNEZ M P, ZUCKER J M. Molten composition B viscosity at elevated temperature [J]. Journal of Energetic Materials, 2016, 34(4): 368–383. DOI: 10.1080/07370652.2015.1102179.
    [11] DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integrated rheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
    [12] DAVIS S M, ZERKLE D K. Short communication: estimation of yield stress/viscosity of molten Octol [J]. AIP Advances, 2018, 8(5): 055202.
    [13] MACOSKO C W. Rheology principles, measurements and applications [M]. New York: VCH Publishers, 1994: 92−98.
    [14] MORRISON F A. Understanding rheology [M]. New York: Oxford University Press, 2001: 232.
    [15] QUEMADA D. Rheology of concentrated disperse systems and minimum energy dissipation principle: I. viscosity-concentration relationship [J]. Rheologica Acta, 1977, 16(1): 82–94. DOI: 10.1007/BF01516932.
    [16] ZHOU J Z Q, UHLHERR P H, LUO F T. Yield stress and maximum packing fraction of concentrated suspensions [J]. Rheologica Acta, 1995, 34(6): 544–561. DOI: 10.1007/BF00712315.
    [17] Fluent Inc. FLUENT user’s guide [M]. US: Fluent Inc, 2006.
    [18] MCCLELLAND M A, GLASCOE E A, NICHOLS A L, et al. ALE3D simulation of incompressible flow, heat transfer, and chemical decomposition of Comp B in slow cookoff experiments [C] // Proceedings of International Detonation Symposium. San Francisco: LLNL, 2014: 517−528.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  3698
  • HTML全文浏览量:  1581
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-10-10
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回