夹心弹对半无限钢靶的侵彻特性

唐奎 王金相 陈兴旺 李渊博 彭楚才

唐奎, 王金相, 陈兴旺, 李渊博, 彭楚才. 夹心弹对半无限钢靶的侵彻特性[J]. 爆炸与冲击, 2020, 40(5): 053302. doi: 10.11883/bzycj-2019-0323
引用本文: 唐奎, 王金相, 陈兴旺, 李渊博, 彭楚才. 夹心弹对半无限钢靶的侵彻特性[J]. 爆炸与冲击, 2020, 40(5): 053302. doi: 10.11883/bzycj-2019-0323
TANG Kui, WANG Jinxiang, CHEN Xingwang, LI Yuanbo, PENG Chucai. Penetration characteristics of jacketed rods into semi-infinite steel targets[J]. Explosion And Shock Waves, 2020, 40(5): 053302. doi: 10.11883/bzycj-2019-0323
Citation: TANG Kui, WANG Jinxiang, CHEN Xingwang, LI Yuanbo, PENG Chucai. Penetration characteristics of jacketed rods into semi-infinite steel targets[J]. Explosion And Shock Waves, 2020, 40(5): 053302. doi: 10.11883/bzycj-2019-0323

夹心弹对半无限钢靶的侵彻特性

doi: 10.11883/bzycj-2019-0323
基金项目: 国家自然科学基金(11672138);瞬态物理国家重点实验室开放基金(6142604180407);湖南省教育厅科学研究项目(18C0638)
详细信息
    作者简介:

    唐 奎(1990- ),男,博士,tkui2014@sina.com

    通讯作者:

    王金相(1978- ),男,博士,研究员,wjx@njust.edu.cn

  • 中图分类号: O381

Penetration characteristics of jacketed rods into semi-infinite steel targets

  • 摘要: 为研究夹心长杆弹在较大速度范围内的失效机理、侵彻性能及影响因素,在较大着靶速度(0.9~3.3 km/s)下开展了两种夹心弹侵彻半无限厚4340钢靶的弹道实验,并结合数值模拟方法进行了深入分析。实验和数值模拟结果表明:超高速(>2.0 km/s)条件下,均质钨合金弹和夹心弹均呈现出显著的流体动力学侵彻特性;中低速度(0.9~1.8 km/s)条件下,均质钨合金弹始终呈现出典型的“蘑菇头”失效,而夹心弹始终呈现出“co-erosion”失效;特别地,初速为936 m/s时,1060铝外套夹心弹的失效模式由初始的“bi-erosion”在后期转变为“co-erosion”。在实验速度范围内,中低速度下,夹心弹的侵彻性能低于均质钨合金弹;而在超高速条件下,两者的侵彻性能基本一致。然而,初始入射动能相同时,夹心弹的侵彻性能显著优于均质钨合金弹;与外套材料的密度相比,其强度对夹心弹侵彻性能的影响更显著,且外套材料强度越小,弹体的侵彻性能越好。综合分析可知,进行夹心弹设计时,应优先选取密度小、强度适中的材料作为外套材料。
  • 图  1  夹心弹和均质钨合金弹外形结构示意图

    Figure  1.  Illustration of the jacketed rod and homogeneous tungsten alloy rod projectiles

    图  2  弹道实验装置示意图

    Figure  2.  Illustration of ballistic experimental device

    图  3  弹托和弹芯

    Figure  3.  Sabots and projectiles

    图  4  夹心弹垂直侵彻4340钢板有限元计算模型

    Figure  4.  Simulation model

    图  5  三种长杆弹侵彻4340钢靶数值模拟与实验结果对比

    Figure  5.  Comparisons between simulation and experimental results for three kinds of projectiles

    图  6  均质钨合金长杆弹侵彻4340钢靶实验结果

    Figure  6.  Post-test longitudinal-section of 4340 steel target fired by 93W homogeneous rods

    图  7  1060Al/93W夹心弹侵彻4340钢靶实验结果

    Figure  7.  Post-test longitudinal-section of 4340 steel target fired by 1060Al/93W jacketed rods

    图  8  TC4/93W夹心弹侵彻4340钢靶实验结果

    Figure  8.  Post-test longitudinal-section of 4340 steel target fired by TC4/93W jacketed rods

    图  9  均质钨合金长杆弹以不同速度侵彻4340钢靶数值模拟结果

    Figure  9.  Simulation results of 4340 steel targets fired by homogeneous 93W rods with different striking velocities

    图  10  1060Al/93W夹心长杆弹以不同速度侵彻4340钢靶数值模拟结果

    Figure  10.  Simulation results of 4340 steel targets fired by 1060Al/93W jacketed rods with different striking velocities

    图  11  TC4/93W夹心长杆弹以不同速度侵彻4340钢靶数值模拟结果

    Figure  11.  Simulation results of 4340 steel targets fired by TC4/93W jacketed rods with different striking velocities

    图  12  两类长杆弹侵彻4340钢靶的无量纲侵深-速度关系

    Figure  12.  Normalized penetration depth versus striking velocity for 4340 steel target fired by two types of rod projectiles

    图  13  两类长杆弹侵彻4340钢靶的无量纲侵深-初始动能

    Figure  13.  Normalized penetration depth versus kinetic energy for 4340 steel target fired by two types of rod projectiles

    图  14  夹心弹外套强度和厚度对侵彻性能的影响

    Figure  14.  Effect of jacket strength and density on the penetration performance of jacketed rods

    表  1  弹靶材料模型和状态方程

    Table  1.   Constitutive model and equation of state for projectile and target materials

    材料材料模型状态方程
    钨合金Johnson-Cook[7]Shock[9]
    1060铝Steinberg[8]Shock
    TC4钛合金SteinbergShock
    4340钢Johnson-CookLinear[9]
    下载: 导出CSV

    表  2  钨合金和4340钢材料参数

    Table  2.   Material parameters for 93W and 4340 steel

    材料ρ/
    (g·cm−3)
    G0/
    GPa
    A/
    GPa
    B/
    MPa
    nCmTm0/
    K
    c1 /
    (m·s−1)
    S1γ0Tr /
    K
    K /
    GPa
    c /
    (J·(kg·K)−1)
    93W17.6 160.01.51 1770.120.0161.001 7234 0291.2371.54300134
    4340钢 7.8381.8 0.8355100.260.0141.031 793300159477
    下载: 导出CSV

    表  3  外套材料参数

    Table  3.   Material parameters for jacket materials

    材料ρ /
    (g·cm−3)
    G0 /
    GPa
    σ0 /
    GPa
    Tm0 /
    K
    c1 /
    (m·s−1)
    S1dG/dP(dG/dT)/
    (GPa·K−1)
    dY/dPβnγ0σm/
    GPa
    TC44.4241.91.332 1105 1301.0280.481 9−2.698×10−20.015 312.00.1 1.232.12
    1060铝2.7027.10.041 2205 3861.3391.767 −1.669×10−20.002 64000.271.970.048
    下载: 导出CSV
  • [1] ERNST H J, LANZ W, WOLF T. Penetration comparison of L/D=20 and 30 mono-block penetrators with L/D=40 jacketed penetrators in different target materials [C] // ROSE I, MARTI F. Proceedings of 19th International Symposium of Ballistics. Interlaken, Switzerland: Casino Kursaal Congress Center, 2001: 1151−1158.
    [2] LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17: 517–526. DOI: 10.1016/0734-743X(95)99876-S.
    [3] PEDERSEN B A, BLESS S J, CAZAMIAS J U. Hypervelocity jacketed penetrators [J]. International Journal of Impact Engineering, 2001, 26(1−10): 603–611. DOI: 10.1016/S0734-743X(01)00121-X.
    [4] ANDERSSON O, OTTOSSON J. High velocity jacketed long rod projectiles hitting oblique steel plates [C] // ROSE I, MARTI F. Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland: Casino Kursaal Congress Center, 2001: 1241−1247.
    [5] PESKES G J J M, LANZ W. Evaluation of replica scale jacketed penetrators for tank ammunition [C] // ROSE I, MARTI F. Proceedings of the 19th International Symposium on Ballistics. nterlaken, Switzerland: Casino Kursaal Congress Center, 2001: 1223−1229.
    [6] CULLIS I G, LYNCH N J. Hydrocode and experimental analysis of scale size jacketed KE projectiles [C] // ROSE I, MARTI F. Proceedings of the 19th International Symposium on Ballistics. Casino Kursaal Congress Center, 1993: 271−280.
    [7] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C] // PASMAN H. Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [8] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high strain rate [J]. Journal of Applied Physics, 1980, 51: 1498–1504. DOI: 10.1063/1.327799.
    [9] AUTODYN, Theory manual revision 4.3 [Z]. Concord, Mass, USA: Century Dynamics, 2005.
    [10] LEE M. Analysis of jacketed rod penetration [J]. International Journal of Impact Engineering, 2000, 24(9): 891–905. DOI: 10.1016/S0734-743X(00)00020-8.
    [11] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0345-06.

    RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0345-06.
    [12] HOHLER V, STILP A J. Hypervelocity impact of rod projectiles with L/D from 1 to 32 [J]. International Journal of Impact Engineering, 1987, 5(1−4): 323–331. DOI: 10.1016/0734-743X(87)90049-2.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  3466
  • HTML全文浏览量:  1445
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 修回日期:  2019-11-22
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回