漂珠颗粒材料静动态力学性能与破碎机理研究

王壮壮 徐鹏 范志强 苗雨中 高玉波 聂韬译

王壮壮, 徐鹏, 范志强, 苗雨中, 高玉波, 聂韬译. 漂珠颗粒材料静动态力学性能与破碎机理研究[J]. 爆炸与冲击, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337
引用本文: 王壮壮, 徐鹏, 范志强, 苗雨中, 高玉波, 聂韬译. 漂珠颗粒材料静动态力学性能与破碎机理研究[J]. 爆炸与冲击, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337
WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337
Citation: WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337

漂珠颗粒材料静动态力学性能与破碎机理研究

doi: 10.11883/bzycj-2019-0337
基金项目: 国家自然科学基金(11602233, 11702257);山西省青年基金(201701D221018);山西省高校科技创新项目(2019-520)
详细信息
    作者简介:

    王壮壮(1994- ),男,硕士,2519041086@qq.com

    通讯作者:

    范志强(1989- ),男,博士,副教授,fanzhq@nuc.edu.cn

  • 中图分类号: O347.4

Study on static and dynamic mechanical properties and fracture mechanism of cenospheres

  • 摘要: 为考察脆性空心颗粒材料冲击载荷下的力学特性,以具有不同粒径分布的粉煤灰漂珠为研究对象,对其静动态力学性能进行实验研究。通过限制颗粒材料压缩应变为50%,分析颗粒破碎率和破碎机理与材料宏观应变率效应的关系。结果表明:(1)不同粒径的漂珠颗粒材料在动态压缩下较准静态压缩下颗粒材料的强度均有明显的增强,在0.001和150 s−1大小颗粒的强度分别提高200%和195%,在150和300 s−1大小颗粒的强度分别提高39%和51.5%,在300和800 s−1大小颗粒的强度并未发生明显的变化;(2)在相同加载速度下粒径较小的颗粒比大粒径颗粒的强度和吸能效果分别提高35%~40%和35%~48%;(3)对破碎后颗粒粒径分布曲线分析可知,随着加载速度的增加,大小颗粒的破碎率和破碎程度都会增大,且在相同加载速度下大颗粒的破碎率较小颗粒的破碎率高;(4)Hardin破碎势分析表明,单位输入能量下颗粒的相对破碎势随冲击速度增大而减小,动态冲击下用于颗粒破碎的能量利用率降低,从而导致材料在相同压缩量下产生更高的能量耗散和应力水平,即表现为宏观的应变率效应。
  • 图  1  漂珠形貌

    Figure  1.  Morphologies of cenospheres

    图  2  漂珠扫描电镜图样

    Figure  2.  SEM Morphology of cenospheres

    图  3  漂珠碎片形貌

    Figure  3.  Morphology of cenospheres fragment

    图  4  实验装置(单位:mm)

    Figure  4.  Experimental facility (unit: mm)

    图  5  LTs与LGs的工程应力应变曲线

    Figure  5.  Stress-strain curves of LTs and LGs

    图  6  漂珠压缩后颗粒碎片分布

    Figure  6.  Particle fragment distribution after cenospheres compression

    图  7  不同应变率下颗粒破碎级配曲线

    Figure  7.  Grain broken gradation curves under different strain rates

    图  8  LGs与LTs应力应变曲线

    Figure  8.  Stress strain curves of LGs and LTs

    图  9  不同应变率下的强度对比

    Figure  9.  Strength of cenospheres at different strain rates

    图  10  不同应变率下的颗粒破碎率

    Figure  10.  Particle breakage rate under different strain rates

    图  11  不同应变率下的能量吸收

    Figure  11.  Energy absorption at different strain rates

    图  12  破碎势示意图

    Figure  12.  Schematic diagram of broken potential

    图  13  LTs和LGs动静态下的破碎势分析

    Figure  13.  Analysis of broken potential under dynamic and static conditions of LTs and LGs

    表  1  粉煤灰漂珠破碎势

    Table  1.   Cenospheres breaking potential

    颗粒大小应变率/s−1BpBtBr输入总能量/J单位能量相对破碎势/J−1
    LGs0.0010.8260.4300.520 4.6100.113
    1500.4900.59310.6000.056
    3000.5300.64211.6700.055
    8000.5300.64111.6300.055
    LTs0.0010.4760.2370.497 6.0850.082
    1500.2680.56214.7700.038
    3000.2940.61717.0620.036
    8000.2900.60917.1700.036
    下载: 导出CSV
  • [1] WANG Y, MA T H, ZHU J J. Analysis on cushion performance of quartz sand in high-g shock [J]. Computer Modelling & New Technologies, 2014, 18(12D): 367–370.
    [2] LING Y F, ZHANG Q, ZHANG F Y, et al. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression [J]. Materials Science and Engineering: A, 2017, 696: 236–247. DOI: 10.1016/j.msea.2017.04.060.
    [3] FAN Z Q, MIAO Y Z, WANG Z Z, et al. Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams [J]. Composites Part B: Engineering, 2019, 171: 329–338. DOI: 10.1016/j.compositesb.2019.05.008.
    [4] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. DOI: 10.1016/j.ijimpeng.2007.07.004.
    [5] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. DOI: 10.1016/j.mechmat.2009.01.003.
    [6] FARR J V. One-dimensional loading-rate effects [J]. Journal of Geotechnical Engineering, 1990, 116(1): 119–135. DOI: 10.1061/(ASCE)0733-9410(1990)116:1(119).
    [7] YAMAMURO J A, ABRANTES A E, LADE P V. Effect of strain rate on the stress-strain behavior of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1169–1178. DOI: 10.1061/(ASCE)GT.1943-5606.0000542.
    [8] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
    [9] HUANG J, XU S, HU S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1–10. DOI: 10.1016/j.ijimpeng.2013.03.007.
    [10] HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
    [11] MONDAL D P, JHA N, GULL B, et al. Microarchitecture and compressive deformation behaviour of Al-alloy (LM13)-cenosphere hybrid Al-foam prepared using CaCO3 as foaming agent [J]. Materials Science and Engineering: A, 2013, 560: 601–610. DOI: 10.1016/j.msea.2012.10.003.
    [12] LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials [J]. Journal of Geotechnical Engineering, 1996, 122(4): 309–316. DOI: 10.1061/(ASCE)0733-9410(1996)122:4(309).
    [13] LIU H Y, KOU S Q, LINDQVIST P A. Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing [J]. Mechanics of Materials, 2005, 37(9): 935–954. DOI: 10.1016/j.mechmat.2004.10.002.
    [14] 倪素环, 陈青果, 侯书军. 颗粒层受压破碎过程的试验研究 [J]. 金属矿山, 2011(1): 109–111, 127.

    NI S H, CHEN Q G, HOU S J. Experimental research on compression crushing process of granular layer [J]. Metal Mine, 2011(1): 109–111, 127.
    [15] HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: 10.1061/(ASCE)0733-9410(1985)111:10(1177).
    [16] 池昌江. 准脆性颗粒材料的受压渐进破碎机制研究[D]. 北京: 清华大学, 2015.
    [17] 黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5035
  • HTML全文浏览量:  2216
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2020-03-03
  • 网络出版日期:  2020-05-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回