炸药裂缝燃烧增压过程的一维理论

尚海林 胡秋实 李涛 傅华 胡海波

尚海林, 胡秋实, 李涛, 傅华, 胡海波. 炸药裂缝燃烧增压过程的一维理论[J]. 爆炸与冲击, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345
引用本文: 尚海林, 胡秋实, 李涛, 傅华, 胡海波. 炸药裂缝燃烧增压过程的一维理论[J]. 爆炸与冲击, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345
SHANG Hailin, HU Qiushi, LI Tao, FU Hua, HU Haibo. One-dimensional theory for pressurization process in explosive crack burning[J]. Explosion And Shock Waves, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345
Citation: SHANG Hailin, HU Qiushi, LI Tao, FU Hua, HU Haibo. One-dimensional theory for pressurization process in explosive crack burning[J]. Explosion And Shock Waves, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345

炸药裂缝燃烧增压过程的一维理论

doi: 10.11883/bzycj-2019-0345
基金项目: 国家自然科学基金(11702273,11802288,11802283,11572297);冲击波物理与爆轰物理重点实验室基金(6142A0305010717,6142A03050105)
详细信息
    作者简介:

    尚海林(1983- ),男,博士,副研究员,hailinshang@caep.cn

    通讯作者:

    李 涛(1978- ),男,博士,副研究员,tedleeus@163.com

  • 中图分类号: O354; TJ55

One-dimensional theory for pressurization process in explosive crack burning

  • 摘要: 为了深入理解炸药裂缝燃烧演化过程中的压力增长行为,提升对事故点火下武器装药向高烈度反应转变机制的认识水平,基于炸药预置裂缝燃烧演化压力历程分析,对某HMX基PBX炸药裂缝燃烧的增压过程开展了理论计算。采用气体动力学相关理论建立了简化的炸药燃烧产物流动模型,基于一维等熵流动假设预测了不考虑黏性和摩擦阻力情况下炸药预置裂缝的燃烧压力增长过程,计算结果显示压力增长阶段与实验结果定性符合,为理解炸药裂缝燃烧的增压行为提供了一种理论解释。
  • 图  1  炸药预置裂缝燃烧实验装置图

    Figure  1.  Experiment device for burning in preformed explosive cracks

    图  2  200 μm宽裂缝燃烧压力阶段划分

    Figure  2.  Different stages of pressure from the 200 μm width crack burning experiment

    图  3  阶段Ⅱ中裂缝燃烧演化示意图

    Figure  3.  Schematic diagram of combustion evolution in stage Ⅱ

    图  4  阶段Ⅲ中裂缝燃烧演化示意图

    Figure  4.  Schematic diagram of combustion evolution in stage Ⅲ

    图  5  裂缝中气体一维流动示意图

    Figure  5.  Schematic diagram of one dimensional gas flow in cracks

    图  6  计算流程示意图

    Figure  6.  Schematic of the calculation process

    图  7  理论计算的200 μm宽裂缝燃烧压力与实验结果对比

    Figure  7.  Comparison between pressures from theoretical calculation and experiments of 200 μm width crack burning

  • [1] BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [2] ASAY B W. Shock wave science and technology reference library, Vol. 5:non-shock initiation of explosives [M]. Heidelberg, Baden-Württemberg, Germany: Springer, 2010: 245−292. DOI: 10.1007/978-3-540-87953-4.
    [3] ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22: 923–952. DOI: 10.1016/0301-9322(96)00041-9.
    [4] 胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

    HU H B, GUO Y W, FU H, et al. The dominant mechanism of reaction violence transition for explosive accident [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
    [5] DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cookoff ignition [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 606−611.
    [6] DICKSON P M, ASAY B W, HENSON B F, et al. Thermal cook-off response of confined PBX 9501 [J]. Proceedings of the Royal Society A, 2004, 460(2052): 3447–3455. DOI: 10.1098/rspa.2004.1348.
    [7] SMILOWITZ L, HENSON B F, ROMERO J J, et al. Proton radiography of a thermal explosion in PBX9501 [J]. AIP Conference Proceedings, 2007, 955: 1139–1142. DOI: 10.1063/1.2832919.
    [8] SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion Ⅱ. Dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111: 103516. DOI: 10.1063/1.4711072.
    [9] SMILOWITZ L, HENSON B F, OSCHWALD D, et al. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography [J]. Applied Physics Letters, 2017, 111: 184103. DOI: 10.1063/1.5004424.
    [10] JACKSON S I, HILL L G, BERGHOUT H L, et al. Runaway reaction in a solid explosive containing a single crack [C] // Proceedings of the 13th International Detonation Symposium. Norfolk, VA, US: Office of Naval Research, 2006: 646−655.
    [11] BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX9501(a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive) [J]. Journal of Applied Physics, 2006, 99(11): 114901. DOI: 10.1063/1.2196219.
    [12] 尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.

    SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
    [13] 尚海林, 杨洁, 李涛, 等. 约束HMX基PBX炸药裂缝中燃烧演化实验 [J]. 含能材料, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.

    SHANG H L, YANG J, LI T, et al. Experimental study on burning evolution in confined explosive cracks [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.
    [14] JACKSON S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
    [15] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012: 67−125.
    [16] MAIENSCHEIN J L, CHANDLER J B. Burn rates of pristine and degraded explosives at elevated temperatures and pressures [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 872−879.
  • 加载中
图(7)
计量
  • 文章访问数:  5834
  • HTML全文浏览量:  1285
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-10-31
  • 网络出版日期:  2019-10-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回