玄武岩纤维高延性水泥基复合材料的动态力学性能

张娜 周健 徐名凤 李辉 马国伟

张娜, 周健, 徐名凤, 李辉, 马国伟. 玄武岩纤维高延性水泥基复合材料的动态力学性能[J]. 爆炸与冲击, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351
引用本文: 张娜, 周健, 徐名凤, 李辉, 马国伟. 玄武岩纤维高延性水泥基复合材料的动态力学性能[J]. 爆炸与冲击, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351
ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351
Citation: ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351

玄武岩纤维高延性水泥基复合材料的动态力学性能

doi: 10.11883/bzycj-2019-0351
基金项目: 国家自然科学基金面上项目(51878238)
详细信息
    作者简介:

    张 娜(1984- ),女,博士研究生,讲师,zn2011@126.com

    通讯作者:

    周 健(1982- ),男,博士,教授,zhoujian@hebut.edu.cn

  • 中图分类号: O383

Dynamic mechanical properties of basalt fiber engineered cementitious composites

  • 摘要: 利用玄武岩纤维和水泥基材料,通过一定配比融合制成了在静态拉伸试验中呈现多缝开裂、应变硬化、极限拉伸应变0.5%以上的玄武岩纤维高延性水泥基复合材料(basalt fiber engineered cementitious composites, BF-ECCs)。用分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置对不同玄武岩纤维掺量的水泥基复合材料进行动态压缩和动态劈裂试验。结果表明:(1)在压、拉两种应力状态下,玄武岩纤维对水泥基复合材料的静态强度、动态强度均有增强,且高应变率下玄武岩纤维对抗压强度动态增幅较小,对劈裂强度动态增幅较大;(2) BF-ECC的抗压强度和劈裂强度均随应变率升高而显著提高,两者均可以采用动态增强因子(dynamic increase factor, DIF)反映动态强度的增幅,但劈裂强度的应变率敏感性强于抗压强度;(3)依据试验得到的普通水泥混凝土速率敏感性的CEB-FIP方程(2010)不适用于BF-ECCs。
  • 图  1  单轴拉伸试样尺寸

    Figure  1.  Dimensions of specimens used in uniaxial tensile tests

    图  2  静态压缩试验

    Figure  2.  Static compression test

    图  3  静态拉伸试验

    Figure  3.  Static tensile test

    图  4  SHPB试验装置

    Figure  4.  SHPB experimental device

    图  5  动态压缩试验

    Figure  5.  Impact compression test

    图  6  不同玄武岩纤维掺量试样静态拉伸应力-应变曲线

    Figure  6.  Static tensile stress-strain curves of specimens with different volume fractions of basalt fiber

    图  7  第2应变率下试样的破坏形态

    Figure  7.  Failure modes of specimens at their corresponding second strain rates

    图  8  不同玄武岩纤维掺量试样应力-应变曲线

    Figure  8.  Stress-strain curves of specimens with different basalt fiber contents

    图  9  不同应变率下试样的动态抗压强度

    Figure  9.  Dynamic compressive strengths of specimens at different strain rates

    图  10  动态抗压强度增长因子与应变率的关系

    Figure  10.  Relation of dynamic increase factor of compressive strength to strain rate

    图  11  不同纤维掺量试样在其第1动态劈裂应变率下的破坏形态

    Figure  11.  Failure modes of BF-ECC specimens with different fiber volume fractions at their corresponding first dynamic crack strain rates

    图  12  不同应变率下试样的动态劈裂强度

    Figure  12.  Dynamic tensile strengths of specimens at different strain rates

    图  13  动态劈裂强度增强因子与应变率的关系

    Figure  13.  Relation of dynamic increase factor of tensile strength to strain rate

    表  1  主要原材料中不同化学成分的质量分数

    Table  1.   Mass fractions of different chemical ingredients in main raw materials

    原材料质量分数/%
    二氧化硅氧化铝氧化铁氧化钙氧化镁三氧化硫烧失量总计
    铝酸盐水泥 7.9550.332.3832.6 2.030.5795.86
    粉煤灰48.6337.373.78 3.051.600.843.6198.88
    硅灰87.28 1.090.75 0.871.761.474.7497.96
    下载: 导出CSV

    表  2  不同试样的材料质量配合比

    Table  2.   Material mix proportions in the different specimens

    试样编号质量分数/%减水剂与固体质量之比φ/%水固质量之比
    水泥粉煤灰硅灰
    BF0%4050101∶25001∶5
    BF2%4050101∶25021∶5
    BF3%4050101∶25031∶5
    下载: 导出CSV

    表  3  静态抗压和抗拉强度

    Table  3.   Static compression and tensile strength

    φ/%fsta,c/MPafsta,ten/MPaεlim,ten/%
    030.2±0.233.24±0.0290.09±0.001
    232.1±0.193.71±0.0090.20±0.003
    334.1±0.253.87±0.0080.66±0.002
    下载: 导出CSV

    表  4  BF-ECC试样动态压缩下的主要力学参数

    Table  4.   Main mechanical parameters of BF-ECC specimens under dynamic compression

    φ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,c/MPaεlim,c/10-6φ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,c/MPaεlim,c/10-6φ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,c/MPaεlim,c/10-6
    0 36.136.8±0.736 530±1732 38.939.4±2.387 113±2423 44.239.1±1.938 550±189
    55.443.0±1.825 693±221 50.546.2±1.935 160±233 66.247.5±2.538 047±245
    77.746.6±1.416 043±194 71.748.9±1.915 497±201 76.953.0±1.825 320±267
    202.358.4±1.527 253±203187.759.3±2.636 637±196172.860.7±2.565 967±234
    下载: 导出CSV

    表  5  动态劈裂试验结果

    Table  5.   Dynamic splitting test results

    φ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,ten/MPaφ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,ten/MPaφ/%${\dot \varepsilon _0}/{{\rm{s}}^{ - 1}}$fd,ten/MPa
    2.86.3±0.314.17.4±0.073.9 8.6±0.26
    03.77.0±0.1024.57.9±0.3134.5 9.3±0.45
    6.37.5±0.208.18.4±0.128.510.7±0.32
    下载: 导出CSV
  • [1] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics, 1992, 118(11): 2246–2264. DOI: 10.1061/(ASCE)0733-9399(1992)118:11(2246).
    [2] MAALEJ M, LI V C. Flexural/tensile-strength ratio in engineered cementitious composites [J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513–528. DOI: 10.1061/(ASCE)0899-1561(1994)6:4(513).
    [3] 徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010: 5−6.
    [4] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用 [J]. 土木工程学报, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.

    XU S L, LI H D. A review on the development of research and application of ultra high toughness cementitious composites [J]. China Civil Engineering Journal, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.
    [5] 刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2011: 35−36.
    [6] YANG E H, LI V C. Rate dependence in engineered cementitious composites [C] // YANG E H, LI V C. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Honolulu, Hawaii, USA: RILEM Publications SARL, 2006: 83−92.
    [7] YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance [J]. Cement and Concrete Research, 2012, 42(8): 1066–1071. DOI: 10.1016/j.cemconres.2012.04.006.
    [8] MAALEJ M, QUEK S T, ZHANG J. Behaviour of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143).
    [9] ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact [J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855–863. DOI: 10.1061/(ASCE)0899-1561(2007)19:10(855).
    [10] MECHTCHERINE V, MILLON O, BUTLE M, et al. Mechanical behaviour of strain hardening cement-based composites under impact loading [J]. Cement and Concrete Composites, 2011, 33(1): 1–11. DOI: 10.1016/j.cemconcomp.2010.09.018.
    [11] SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels [J]. Composite Structures, 2013, 104: 320–330. DOI: 10.1016/j.compstruct.2013.01.029.
    [12] LI V C, MISHRA D K, WU H C. Matrix design for Pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [13] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [14] ZHOU J, QIAN S Z, BELTRAN M G S., et al Development of engineered cementitious composites with limestone powder and blast furnace slag [J]. Materials and Structures, 2010, 43(6): 803–814. DOI: 10.1617/s11527-009-9549-0.
    [15] PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112: 739–746. DOI: 10.1016/j.conbuildmat.2016.02.112.
    [16] 成涛华, 李玉香. 玄武岩纤维增强混凝土力学性能研究 [J]. 混凝土与水泥制品, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.

    CHEN T H, LI Y X. Study on mechanical performance of basalt fiber reinforced concrete [J]. China Concrete and Cement Products, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.
    [17] 葛浩军. 玄武岩纤维混凝土力学性能及耐久性研究[D]. 大连: 大连理工大学, 2019.
    [18] SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete [J]. Construction and Building Materials, 2019, 202: 58–72. DOI: 10.1016/j.conbuildmat.2019.01.018.
    [19] 李为民, 许金余. 玄武岩纤维混凝土的冲击力学行为及本构模型 [J]. 工程力学, 2009, 26(1): 86–91.

    LI W M, XU J Y. Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading [J]. Engineering Mechanics, 2009, 26(1): 86–91.
    [20] 朱涵, 刘昂, 于泳. 低温下玄武岩纤维混凝土的抗冲击性能 [J]. 材料科学与工程学报, 2018, 36(4): 600–604.

    ZHU H, LIU A, YU Y. Low temperature impact performance of basalt fiber reinforced concrete [J]. Journal of Materials Science and Engineering, 2018, 36(4): 600–604.
    [21] ZHANG H, WANG B, XIE A Y, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete [J]. Construction and Building Materials, 2017, 152: 154–167. DOI: 10.1016/j.conbuildmat.2017.06.177.
    [22] 工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461-2018 [S]. 北京: 建材工业出版社, 2018.
    [23] CEB, FIP. FIB model code 2010 [S]. 2011.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  6176
  • HTML全文浏览量:  2155
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-11
  • 修回日期:  2019-12-11
  • 网络出版日期:  2020-03-25
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回