爆炸波在非饱和钙质砂中的传播规律

赵章泳 王明洋 邱艳宇 紫民 邢化岛

赵章泳, 王明洋, 邱艳宇, 紫民, 邢化岛. 爆炸波在非饱和钙质砂中的传播规律[J]. 爆炸与冲击, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389
引用本文: 赵章泳, 王明洋, 邱艳宇, 紫民, 邢化岛. 爆炸波在非饱和钙质砂中的传播规律[J]. 爆炸与冲击, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389
ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, ZI Min, XING Huadao. The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389
Citation: ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, ZI Min, XING Huadao. The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389

爆炸波在非饱和钙质砂中的传播规律

doi: 10.11883/bzycj-2019-0389
基金项目: 国家自然科学基金(51808552)
详细信息
    作者简介:

    赵章泳(1992- ),男,博士,zhaozhangyong1@126.com

    通讯作者:

    邱艳宇(1978- ),女,博士,副教授,qiuyanyu78@sina.com

  • 中图分类号: O382

The propagation laws of blast wave in unsaturated calcareous sand

  • 摘要: 以球形TNT药包作为爆源,在密实的非饱和钙质砂中进行了一系列大尺寸爆炸模型试验。主要研究在不同药包质量、埋深及砂土试样含水率条件下,密实钙质砂中爆炸波的主要基本参数随传播距离增加而变化的规律。试验结果表明爆炸波主要以弹塑性波的形式在密实钙质砂中传播,在干燥和潮湿试样中塑性纵波波速随试样初始密度的增大或含水率的降低而增大,且范围分别为250~282 m/s和302~339 m/s。集团装药情况下,非饱和钙质砂中封闭爆炸的临界比例埋深约为2.25 m/kg1/3。在试验范围内,密实钙质砂中爆炸波的法向应力峰值及法向比冲量的衰减均服从爆炸相似律。封闭爆炸时,干燥钙质砂中爆炸波的应力衰减指数在测点比例爆心距大于或小于0.75 m/kg1/3处分别为2.94或1.37;潮湿钙质砂中爆炸波的应力衰减指数随含水率升高而增大,其范围为1.39~1.79。法向比冲量衰减指数随试样含水率升高而减小,其范围为0.97~1.18。
  • 图  1  钙质砂试样级配曲线

    Figure  1.  Particle size distribution curve of calcareous sand

    图  2  爆炸模型试验所用容器

    Figure  2.  The container used in explosion experiments

    图  3  球形药包

    Figure  3.  Spherical explosives

    图  4  土压力传感器

    Figure  4.  Soil pressure sensors

    图  5  药包及传感器位置示意图

    Figure  5.  The schematic of the locations of explosive and sensors

    图  6  试验前后试件表面状态变化

    Figure  6.  Changes of sample surface state after the explosion tests

    图  7  应力时程曲线

    Figure  7.  Stress-time curves

    图  8  封闭爆炸试验中爆心距与到时关系

    Figure  8.  The relationship between blast center distance and arrival time in closed explosion

    图  9  干燥钙质砂法向应力峰值衰减的试验结果及拟合曲线

    Figure  9.  Experiment results and fitting curves of the peak normal stress in dry calcareous sand

    图  10  潮湿钙质砂法向应力峰值试验结果及拟合曲线

    Figure  10.  Experiment results and fitting curves of the peak normal stress in moist calcareous sand

    图  11  消除反射波对应力时程曲线影响的方法

    Figure  11.  The method for eliminating the influence of reflected wave on stress-time curve

    图  12  DCS64-1试验中各测点的比冲量时程曲线

    Figure  12.  Specific impulse time histories at each measuring point in DCS64-1 test

    图  13  干燥钙质砂折合比冲量试验结果及拟合曲线

    Figure  13.  Experiment results and fitting curves of the specific impulse in dry calcareous sand

    图  14  潮湿钙质砂折合比冲量试验结果及拟合曲线

    Figure  14.  Experimental results and fitting curves of the specific impulse in moist calcareous sand

    图  15  不同含水率钙质砂中的折合比冲量衰减

    Figure  15.  Attenuation of reduced specific impulse in calcareous sand with different moisture content

    表  1  影响砂土中爆炸波传播规律的主要参数

    Table  1.   Major parameters influencing the propagation of blast wave in sand

    参数名称及符号量纲
    炸药药包质量W[M]
    装药密度ρw[ML-3]
    单位质量炸药的化学能Ew[L2T-2]
    爆炸产物的膨胀指数γ
    砂土密度ρ0[ML-3]
    塑性纵波波速cp[LT-1]
    内摩擦角φ
    试样尺寸药包中心埋深h[L]
    测点到爆心的距离R[L]
    下载: 导出CSV

    表  2  爆炸模型试验参数

    Table  2.   Designed parameters for explosion model test

    试验编号药包设计质量W/g设计埋深h/m设计含水率/%设计爆心距R/m
    DCS64-1 640.9 10.1,0.2,0.3,0.4,0.6,0.8,1.0
    DCS64-2 640.3 10.1,0.2,0.3,0.4,0.6,0.8,1.0
    DCS64-3 640 10.1,0.2,0.3,0.4,0.6,0.8,1.0
    DCS2162160 10.15,0.2,0.3,0.45,0.6,0.8,1.0
    DCS5125120 10.2,0.3,0.4,0.6,0.8,1.0
    WCS64-1 640.9100.15,0.2,0.3,0.4,0.6,0.8,1.0
    WCS64-2 640.9200.1,0.2,0.3,0.4,0.6,0.8,1.0
    WCS64-3 640.9250.1,0.2,0.3,0.4,0.6,0.8,1.0
    下载: 导出CSV

    表  3  实测爆炸试验参数表

    Table  3.   Summary of measured parameters in explosion test

    试验编号药包质量/g试样含水率/%药包埋深/m试样密度/(g·cm−3)
    总质量除以总体积法环刀取样法环刀取土钻取样法
    DCS64-1 63.60.7±0.50.901.371.35±0.02
    DCS64-2 63.11.5±0.40.311.391.36±0.04
    DCS64-3 63.31.9±0.50 1.381.36±0.02
    DCS216214.22.1±0.50 1.391.37±0.03
    DCS512510.22.0±0.30 1.381.37±0.02
    WCS64-1 62.810.5±0.70.891.541.51±0.041.54±0.04
    WCS64-2 63.318.9±1.50.921.591.55±0.071.58±0.06
    WCS64-3 63.123.7±2.20.911.801.76±0.061.81±0.04
    下载: 导出CSV

    表  4  密实钙质砂中的爆炸波波速

    Table  4.   The blast wave velocity in dense calcareous sand

    试验编号密度/(g·cm−3)弹性纵波波速c0/(m·s−1)R2塑性纵波波速cp/(m·s−1)R2
    DCS64-11.373590.9982500.995
    DCS64-21.393440.9982820.995
    DCS64-31.382910.9982650.997
    DCS2161.393320.9992780.999
    DCS5121.383390.9992740.999
    WCS64-11.504290.9993770.998
    WCS64-21.593870.9983150.996
    WCS64-31.803740.9993020.999
    下载: 导出CSV

    表  5  干燥钙质砂法向应力峰值衰减规律参数值

    Table  5.   The parameters of attenuation law of peak normal stress in dry calcareous sand

    试验编号$K_{\sigma} $$\mu_{\sigma} $R2$K_{\sigma} $$\mu_{\sigma} $R2
    第一段(R*≤0.75 m/kg1/3)第二段(R*>0.75 m/kg1/3)
    DCS64-10.9442.940.9981.4741.370.976
    DCS64-2
    DCS64-30.5483.110.9610.791.830.938
    DCS216
    DCS512
    下载: 导出CSV

    表  6  潮湿钙质砂法向应力峰值衰减规律参数值

    Table  6.   The parameters for attenuation law of peak normal stress in moist calcareous sand

    试验编号$K_{\sigma} $$\mu_{\sigma} $R2
    WCS64-11.8051.390.965
    WCS64-21.5301.550.986
    WCS64-32.2001.790.978
    下载: 导出CSV

    表  7  非饱和钙质砂刚壁反射因数

    Table  7.   The rigid reflection coefficient of unsaturated calcareous sand

    试验编号外推自由场应力峰值σI,max/MPa实测反射波应力峰值σR,max/MPa刚壁反射因数σR,max/σI,max
    DCS64-10.4210.6751.603
    DCS64-20.4210.6351.508
    DCS64-30.1490.2191.473
    DCS2160.3110.4581.473
    DCS5120.5290.7961.504
    WCS64-10.5050.8041.592
    WCS64-20.3680.4511.225
    WCS64-30.4300.5371.249
    下载: 导出CSV

    表  8  非饱和钙质砂中折合比冲量衰减公式参数值

    Table  8.   The parameters of attenuation law of specific impulse in unsaturated calcareous sand

    试验编号KIμIR2
    DCS64-17.571.150.944
    DCS64-25.541.140.975
    DCS64-31.571.160.933
    DCS216
    DCS512
    WCS64-15.331.180.959
    WCS64-24.921.020.901
    WCS64-34.650.970.946
    下载: 导出CSV
  • [1] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010.

    LIU C Q, YANG Z Q, WANG R. The present condition and development in studies of mechanical properties of calcareous soils [J]. Rock and Soil Mechanics, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010.
    [2] 陈海洋. 钙质砂的内孔隙研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−11.
    [3] 陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析 [J]. 岩土力学, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008.

    CHEN H Y, WANG R, LI J G, et al. Grain shape analysis of calcareous soil [J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008.
    [4] 张家铭. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2004: 1−9.
    [5] 虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006: 1−16.
    [6] 李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−10.
    [7] SOCHET I, GARDEBAS D, CALDERARA S. Fundamental of protective design for conventional weapons: TM5-855-1[R]. Department of The Army Technical Manual, USA Army Corps of Engineers. 1986.
    [8] LYAKHOV G M. Fundamentals of explosion dynamics in soils and liquid media [M]. Moscow: Nedra, 1964.
    [9] LYAKHOV G M, OSADCHENKO R A, POLYAKOVA N I. Plane waves in nonhomogeneous plastic media and their interaction with obstacles [J]. Journal of Applied Mechanics and Technical Physics, 1969, 10(4): 559–566. DOI: 10.1007/bf00916211.
    [10] ZAKHAROV S D, LYAKHOV G M, MIZYAKIN S D. Determination of the dynamic compressibility of soil based on the parameters of plane detonation waves [J]. Journal of Applied Mechanics and Technical Physics, 1972, 13(1): 126–130. DOI: 10.1007/BF00852370.
    [11] LYAKHOV G M, OKHITIN V N. Spherical blast waves in multicomponent media [J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(2): 208–214. DOI: 10.1007/BF00850660.
    [12] LYAKHOV G M, VOVK A A, KRAVETS V G, et al. Compaction of loessal soils by detonation of surface charges [J]. Soil Mechanics and Foundation Engineering, 1976, 13(2): 121–125. DOI: 10.1007/BF01703745.
    [13] LYAKHOV G M. Waves in soils and porous multicomponent media [M]. Nauka, Moscow, 1982.
    [14] LYAKHOV G M, SALITSKAYA V I. Dissipation of blast waves and the dynamic compressibility of soils [J]. Combustion, Explosion and Shock Waves, 1983, 19(1): 90–93. DOI: 10.1007/BF00790244.
    [15] KRYMSKⅡ A V, LYAKHOV G M. Waves from an underground explosion [J]. Journal of Applied Mechanics and Technical Physics, 1984, 25(3): 361–367. DOI: 10.1007/BF00910394.
    [16] LYAKHOV G M, LUCHKO I A, PLAKSⅡ V A, et al. Spherical detonation waves in a solid multicomponent viscoplastic medium [J]. Soviet Applied Mechanics, 1986, 22(5): 490–495. DOI: 10.1007/BF00888551.
    [17] 梁霍夫 Г M. 岩土中爆炸动力学基础[M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993.
    [18] KARINSKI Y S, FELDGUN V R, YANKELEVSKY D Z. Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation [J]. Journal of engineering mechanics, 2009, 135(10): 1166–1179. DOI: 10.1061/(ASCE)EM.1943-7889.0000042.
    [19] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
    [20] KARINSKI Y S, FELDGUN V R, RACAH E, et al. Mach stem due to an underground explosion near a rigid structure buried in soil [J]. Shock Waves, 2015, 25(1): 63–76. DOI: 10.1007/s00193-014-0544-1.
    [21] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究 [J]. 岩土力学, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005.

    XU X Y, WANG R, WANG X Z, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005.
    [22] 徐学勇. 饱和钙质砂爆炸响应动力特性研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2009: 89−91.
    [23] 谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015.
    [24] MULILIS J P, ARULANANDAN K, MITCHELL J K, et al. Effects of sample preparation on sand liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91–108. DOI: 10.1016/0148-9062(77)90060-2.
    [25] LADD R S. Specimen preparation and cyclic stability of sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103(GT-6). DOI: 10.1016/0148-9062(75)91261-9.
    [26] JUANG C H, HOLTZ R D. Fabric, pore size distribution, and permeability of sandy soils [J]. Journal of Geotechnical Engineering, 1986, 112(9): 855–868. DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855).
    [27] NIMMO J R, AKSTIN K C. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods [J]. Soil Science Society of America Journal, 1988, 52(2): 303–310. DOI: 10.2136/sssaj1988.03615995005200020001x.
    [28] 亨利奇 J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987.
    [29] 谢多夫 Л Н. 力学中的相似方法与量纲理论[M]. 沈青, 译. 北京: 科学出版社, 1982.
    [30] 马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究 [J]. 岩石力学与工程学报, 2011(S1): 3172–3178.

    MA L Q, ZHANG J M. Centrifugal model testing study of explosion induced craters and propagation of ground shock in clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011(S1): 3172–3178.
    [31] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203.

    MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203.
    [32] 施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.

    SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
    [33] 叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923.

    YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923.
    [34] 奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
    [35] 水利电力部. 土工试验方法标准: GB/T 50123-2019 [S].
    [36] 贾永胜, 王维国, 谢先启, 等. 低含水率砂土和饱和砂土场地爆炸成坑特性实验 [J]. 爆炸与冲击, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.

    JIA Y S, WANG W G, XIE X Q, et al. Characterization of blast-induced craters in low-moisture and saturated sand from field experiments [J]. Explosion and Shock Waves, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.
    [37] KRAUTHAMMER T. Modern protective structures [M]. CRC Press, 2008.
    [38] 波克罗夫斯基 Г И, 费多罗夫 И С. 在变形介质中冲击与爆破作用[M]. 刘清荣, 黄文彬, 译. 北京: 中国工业出版社, 1965.
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  3904
  • HTML全文浏览量:  1349
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-06-21
  • 网络出版日期:  2020-07-25
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回