爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究

张玉琦 蒋楠 贾永胜 周传波 罗学东 吴廷尧

张玉琦, 蒋楠, 贾永胜, 周传波, 罗学东, 吴廷尧. 爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究[J]. 爆炸与冲击, 2020, 40(9): 095901. doi: 10.11883/bzycj-2019-0399
引用本文: 张玉琦, 蒋楠, 贾永胜, 周传波, 罗学东, 吴廷尧. 爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究[J]. 爆炸与冲击, 2020, 40(9): 095901. doi: 10.11883/bzycj-2019-0399
ZHANG Yuqi, JIANG Nan, JIA Yongsheng, ZHOU Chuanbo, LUO Xuedong, WU Tingyao. Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load[J]. Explosion And Shock Waves, 2020, 40(9): 095901. doi: 10.11883/bzycj-2019-0399
Citation: ZHANG Yuqi, JIANG Nan, JIA Yongsheng, ZHOU Chuanbo, LUO Xuedong, WU Tingyao. Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load[J]. Explosion And Shock Waves, 2020, 40(9): 095901. doi: 10.11883/bzycj-2019-0399

爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究

doi: 10.11883/bzycj-2019-0399
基金项目: 国家自然科学基金(41807265、41972286);中央高校基本科研业务费专项资金资助项目(CUGQY1931)
详细信息
    作者简介:

    张玉琦(1995- ),男,硕士研究生,yuqiz@cug.edu.cn

    通讯作者:

    蒋 楠(1986- ),男,博士,副教授,happyjohn@foxmail.com

  • 中图分类号: O383

Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load

  • 摘要: 为研究爆破地震荷载作用下埋地高密度聚乙烯(high-density polyethylene,HDPE)波纹管的动力响应规律,通过现场预埋管道的爆破试验,结合爆破地震与动态应变等测试手段,分析了爆破地震荷载作用下埋地管道的动力响应特征,研究了管道振动速度及动态应变的分布特征,基于von Mises屈服准则分析评价了管道安全性,提出了爆破振动速度控制标准。试验研究结果表明:试验中管道与地表振速以及管道动态应变随爆心距的减少,随炸药量的增加而增大;爆破地震波振动主频高,管道振动主频高于地表;相同爆破工况条件下,管道上方地表振速普遍大于管道振速;管道截面背爆侧峰值轴向应变以拉应变为主,迎爆侧峰值环向应变以压应变为主;本试验管道安全控制振速可取20 cm/s,此时管道处于安全状态。
  • 图  1  管道尺寸示意(cm)

    Figure  1.  Pipe size diagram (cm)

    图  2  现场试验示意图

    Figure  2.  Field test diagram

    图  3  振动速度测点示意图

    Figure  3.  Vibration velocity measuring point diagram

    图  4  动应变测点示意图

    Figure  4.  Dynamic strain measurement point diagram

    图  5  爆破实验方案设计流程

    Figure  5.  Blasting experiment plan design flow

    图  6  测点峰值振速

    Figure  6.  Peak particle velocities

    图  7  主频率分布

    Figure  7.  Dominant frequency distribution

    图  8  截面A各测点峰值应变

    Figure  8.  Peak strain at each measuring point of section A

    图  9  管道与地表振速拟合直线

    Figure  9.  Pipeline and surface vibration fit curve

    图  10  管道振速与轴向、环向应变拟合直线

    Figure  10.  Straight line fitting of pipe vibration velocity with axial and circumferential strain

    图  11  管道应力方向示意图

    Figure  11.  Schematic diagram of pipeline stress direction

    表  1  工况参数

    Table  1.   Working condition parameter

    工况炸药埋深/m炸药量/kg水平距离/m
    16.5825
    26.5820
    36.5815
    46.5810
    54825
    64820
    74815
    84810
    949.65
    下载: 导出CSV

    表  2  地表合振动速度峰值

    Table  2.   Resultant peak velocity at surface

    工况测点D6速度/(cm·s-1)测点D7速度/(cm·s-1)测点D3速度/(cm·s-1)
    1 4.44 5.80 4.92
    2 3.60 4.71 3.67
    3 7.85 8.87 7.58
    411.3712.54 8.89
    5 4.86 3.69 3.05
    6 4.74 3.73 3.01
    7 7.41 7.38 4.34
    815.2016.5411.61
    928.0632.7115.30
    下载: 导出CSV
  • [1] 王栋, 何历超, 王凯. 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析 [J]. 土木工程学报, 2017, 50(S2): 134–140. DOI: 10.15951/j.tmgcxb.2017.s2.021.

    WANG D, HE L C, WANG K. Field measurement and numerical simulation analysis for influence of blasting excavation on adjacent buried pipelines [J]. China Civil Engineering Journal, 2017, 50(S2): 134–140. DOI: 10.15951/j.tmgcxb.2017.s2.021.
    [2] GIANNAROS E, KOTZAKOLIOS T, KOSTOPOULOS V. Blast response of composite pipeline structure using finite element techniques [J]. Journal of Composite Materials, 2016, 50(25): 3459–3476. DOI: 10.1177/0021998315618768.
    [3] WON J H, KIM M K, KIM G, et al. Blast-induced dynamic response on the interface of a multilayered pipeline [J]. Structure and Infrastructure Engineering, 2014, 10(1): 80–92. DOI: 10.1080/15732479.2012.699532.
    [4] 夏宇磬, 蒋楠, 姚颖康, 等. 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应 [J]. 爆炸与冲击, 2020, 40(4): 043302. DOI: 10.11883/bzycj-2019-0207.

    XIA Y Q, JIANG N, YAO Y K, et al. Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves [J]. Explosion and Shock Waves, 2020, 40(4): 043302. DOI: 10.11883/bzycj-2019-0207.
    [5] HA D, ABDOUN T H, O’ROURKE M J, et al. Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(10): 1501–1515. DOI: 10.1061/(ASCE)1090-0241(2008)134:10(1501).
    [6] ABDOUN T H, HA D, O’ROURKE M J, et al. Factors influencing the behavior of buried pipelines subjected to earthquake faulting [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(3): 415–427. DOI: 10.1016/j.soildyn.2008.04.006.
    [7] 王海涛, 金慧, 贾金青, 等. 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.

    WANG H T, JIN H, JIA J Q, et al. Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.
    [8] ZHANG J, ZHANG L, LIANG Z. Buckling failure of a buried pipeline subjected to ground explosions [J]. Process Safety and Environmental Protection, 2018, 114: 36–47. DOI: 10.1016/j.psep.2017.11.017.
    [9] PARVIZ M, AMINNEJAD B, FIOUZ A. Numerical simulation of dynamic response of water in buried pipeline under explosion [J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2798–2806. DOI: 10.1007/s12205-017-0889-y.
    [10] 娄敏, 明海芹. 基于LS-DYNA海底悬空管道受坠物碰撞动力响应分析 [J]. 海洋通报, 2015, 34(1): 113–120. DOI: 10.11840/j.issn.1001-6392.2015.01.017.

    LOU M, MING H Q. The dynamic response analysis of submarine suspended pipeline impacted by dropped objects based on LS-DYNA [J]. Marine Science Bulletin, 2015, 34(1): 113–120. DOI: 10.11840/j.issn.1001-6392.2015.01.017.
    [11] FRANCINI R B, BALTZ W N. Blasting and construction vibrations near existing pipelines: what are appropriate levels? [J]. Journal of Pipeline Engineering, 2009, 8(4): 519–531.
    [12] JIANG N, GAO T, ZHOU C B, et al. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel [J]. Tunnelling and Underground Space Technology, 2018, 81: 590–601. DOI: 10.1016/j.tust.2018.08.022.
    [13] 张震, 周传波, 路世伟, 等. 爆破振动作用下邻近埋地混凝土管道动力响应特性 [J]. 哈尔滨工业大学学报, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089.

    ZHANG Z, ZHOU C B, LU S W, et al. Dynamic response characteristic of adjacent buried concrete pipeline subjected to blasting vibration [J]. Journal of Harbin Institute of Technology, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089.
    [14] 朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. DOI: 10.13722/j.cnki.jrme.2019.0183.

    ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. DOI: 10.13722/j.cnki.jrme.2019.0183.
    [15] 贾永胜, 钟冬望, 姚颖康, 等. 基坑爆破预留层对围护桩的保护作用数值分析 [J]. 工程爆破, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.

    JIA Y S, ZHONG D W, YAO Y K, et al. Numerical calculation of the barrier effect of the pre-protective layer on bored piles in deep foundation pit blasting [J]. Engineering Blasting, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.
    [16] 张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.

    ZHANG Z, ZHOU C B, LU S W, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra-shallow buried underpass [J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.
    [17] 肖文芳. 地铁隧道掘进爆破振动测试与数值模拟研究 [D]. 武汉: 武汉理工大学, 2011.

    XIAO W F. Study of vibration testing and numerical simulation on metro tunnel excavation blasting[D]. Wuhan: Wuhan University of Technology, 2011.
    [18] 武卫星, 郭晓刚, 朱敏. 武汉轨道交通广虎区间隧道爆破施工方案优化 [J]. 人民长江, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.

    WU W X, GUO X G, ZHU M. Optimization of blasting construction scheme of Guang-Hu section subway tunnels in Wuhan [J]. Yangtze River, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.
    [19] 钟冬望, 卢哲, 黄雄, 等. 爆破荷载下埋地PE管道动力响应的试验研究 [J]. 爆破, 2018, 35(4): 1–5; 89. DOI: 10.3963/j.issn.1001-487X.2018.04.001.

    ZHONG D W, LU Z, HUANG X. Experimental study on buried PE pipeline under blasting loads [J]. Blasting, 2018, 35(4): 1–5; 89. DOI: 10.3963/j.issn.1001-487X.2018.04.001.
    [20] 钟冬望, 龚相超, 涂圣武, 等. 高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应 [J]. 爆炸与冲击, 2019, 39(3): 033102. DOI: 10.11883/bzycj-2017-0334.

    ZHONG D W, GONG X C, TU S W, et al. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave [J]. Explosion and Shock Waves, 2019, 39(3): 033102. DOI: 10.11883/bzycj-2017-0334.
    [21] 贵州省住房和城乡建设厅. DBJ52/T039-2017 室外埋地聚乙烯(PE)给水管道工程技术规程[S]. 2018.
    [22] 罗利, 马燕, 张永军, 等. 地基沉降作用下埋地聚乙烯管强度失效的数值模拟 [J]. 建筑材料学报, 2020, 23(2): 473–478.

    LUO L, MA Y, ZHANG Y J, et al. Numerical simulation of strength failure of buried polyethylene pipes under foundation settlement [J]. Journal of Building Materials, 2020, 23(2): 473–478.
    [23] 何平笙. 高聚物的力学性能[M]. 2版. 合肥: 中国科学技术大学出版社, 2008: 232−235.
    [24] 舒亚俐. 既有给排水管线的震害及管道抗震能力关键问题综合分析 [J]. 城市道桥与防洪, 2013(3): 111–114. DOI: 10.16799/j.cnki.csdqyfh.2013.03.032.

    SHU Y L. Comprehensive analysis of seismic hazard to existing water and wastewater pipelines and key issues of seismic capacity of pipelines [J]. Urban Roads Bridges & Flood Control, 2013(3): 111–114. DOI: 10.16799/j.cnki.csdqyfh.2013.03.032.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  3660
  • HTML全文浏览量:  1017
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 修回日期:  2020-05-24
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回