氢气泄爆作用下结构动力响应特性研究

郝腾腾 王昌建 颜王吉 任伟新

郝腾腾, 王昌建, 颜王吉, 任伟新. 氢气泄爆作用下结构动力响应特性研究[J]. 爆炸与冲击, 2020, 40(6): 065401. doi: 10.11883/bzycj-2019-0412
引用本文: 郝腾腾, 王昌建, 颜王吉, 任伟新. 氢气泄爆作用下结构动力响应特性研究[J]. 爆炸与冲击, 2020, 40(6): 065401. doi: 10.11883/bzycj-2019-0412
HAO Tengteng, WANG Changjian, YAN Wangji, REN Weixin. Structural dynamical characteristics induced by vented hydrogen explosion[J]. Explosion And Shock Waves, 2020, 40(6): 065401. doi: 10.11883/bzycj-2019-0412
Citation: HAO Tengteng, WANG Changjian, YAN Wangji, REN Weixin. Structural dynamical characteristics induced by vented hydrogen explosion[J]. Explosion And Shock Waves, 2020, 40(6): 065401. doi: 10.11883/bzycj-2019-0412

氢气泄爆作用下结构动力响应特性研究

doi: 10.11883/bzycj-2019-0412
基金项目: 国家重点研发计划政府间国际创新合作重点专项(2016YFE0113400);国家自然科学基金(51778203,51778204,51608162)
详细信息
    作者简介:

    郝腾腾(1994- ),男,硕士研究生,Civil_Hao@mail.hfut.edu.cn

    通讯作者:

    颜王吉(1985- ),男,博士,副教授,civilyanwj@gmail.com

  • 中图分类号: O383.2

Structural dynamical characteristics induced by vented hydrogen explosion

  • 摘要: 氢能因具有环保高效等优点,被公认为21世纪最具发展前景的清洁能源,缺点是在使用过程中极易发生爆炸事故。泄爆作为爆炸防护的重要手段,可以有效提高结构在爆炸过程中的安全性和可靠性。为获得结构在氢气泄爆作用下的动力响应特性,本文从实验和数值模拟两个方面展开研究。在12 m×2.5 m×2.5 m的大尺度ISO标准容器中开展了一系列氢气泄爆实验,主要考虑氢气体积分数、点火位置、障碍物布置等参数的影响,并对结构内部超压荷载特征和动力响应演化规律进行了分析。结果表明,结构位移由首个超压峰值主导,并在该阶段与方舱内超压趋势保持一致,且两者峰值之间保持线性关系;加速度则由不稳定燃烧引起的超压高频振荡主导。在实验范围内,位移峰值受氢气体积分数影响显著,且随着氢气体积分数增大而增大。加速度峰值则还受到点火位置的影响,中心点火的情景要大于后端点火的情景。障碍物数量对结构动力响应的影响并非单调关系。此外,基于现场环境振动测试结果,建立了该结构的基准有限元模型。数值模拟及实验结果吻合良好,因此该基准有限元模型可进一步用于不同工况下氢气泄爆荷载作用下结构动力响应的预测和分析。
  • 图  1  实验装置

    Figure  1.  Experimental setup

    图  2  传感器布置图

    Figure  2.  Sensor allocation diagram

    图  3  实验流程

    Figure  3.  Operation process

    图  4  实验4中各测点超压时程曲线

    Figure  4.  Overpressure time-history curves from different sensors in test 4

    图  5  实验4中D1处的位移时程曲线

    Figure  5.  Displacement-time curve at D1 in test 4

    图  6  工况2的位移和超压时程曲线

    Figure  6.  Displacement and overpressure time-history curves for case 2

    图  7  工况2的加速度和超压时程曲线

    Figure  7.  Acceleration and overpressure time-history curves for case 2

    图  8  不同工况下Δp4和Δp1的比值

    Figure  8.  Ratios of Δp4 to Δp1 for different cases

    图  9  超压峰值和位移峰值关系拟合曲线

    Figure  9.  Fitting curve of displacement peak value and overpressure peak value

    图  10  响应峰值与氢气体积分数关系

    Figure  10.  Variations of displacement and acceleration with hydrogen volume fraction

    图  11  方舱内壁荷载分区

    Figure  11.  Load division on inner surface of container

    图  12  基于基准有限元模型的预测响应与实测结果对比

    Figure  12.  Comparisons of displacements between simulation result and experimental data

    图  13  侧面纵轴上不同时刻结构位移分布曲线

    Figure  13.  Displacement distribution curves of lateral longitudinal axis at different times

    表  1  实验工况

    Table  1.   Test cases

    工况实验点火位置障碍物氢气体积分数/%
    11~4BI012、16、20、24
    25~8CI012、16、20、24
    39~12BI112、16、20、24
    413~16CI112、16、20、24
    517~20BI212、16、20、24
    621~24CI212、16、20、24
    下载: 导出CSV

    表  2  修正前后有限元模型计算结果和实测结果比较

    Table  2.   Comparisons of natural frequencies between the simulation and test results before and after model updating

    阶数实测频率/Hz修正前修正后
    频率/Hz相对误差/%频率/Hz相对误差/%
    117.3419.06 9.9217.96 3.58
    217.9319.7510.1518.61 3.79
    322.8523.04 0.8321.71−4.99
    423.9125.18 5.3123.77−0.59
    524.2626.9110.9225.32 4.37
    625.4328.2811.2126.49 4.17
    下载: 导出CSV
  • [1] YANG F Q, GUO J, WANG C J, et al. Duct-vented hydrogen-air deflagrations: the effect of duct length and hydrogen concentration [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21142–21148. DOI: 10.1016/j.ijhydene.2018.09.074.
    [2] 曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    [3] WANG J G, GUO J, YANG F Q, et al. Effects of hydrogen concentration on the vented deflagration of hydrogen-air mixtures in a 1 m3 vessel [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21161–21168. DOI: 10.1016/j.ijhydene.2018.09.108.
    [4] WANG X, WANG C J, FAN X J, et al. Effects of hydrogen concentration and film thickness on the vented explosion in a small obstructed rectangular container [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22752–22759. DOI: 10.1016/j.ijhydene.2018.12.207.
    [5] LV X S, ZHENG L, ZHANG Y G, et al. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17740–17749. DOI: 10.1016/j.ijhydene.2016.07.263.
    [6] ZHANG S, TANG Z S, LI J L, et al. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen-air deflagrations in an end-vented duct with an obstacle [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100–26108. DOI: 10.1016/j.ijhydene.2019.08.057.
    [7] GUO J, LI Q, CHEN D D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel [J]. International Journal of Hydrogen Energy, 2015, 40(19): 6478–6486. DOI: 10.1016/j.ijhydene.2015.03.059.
    [8] 周宁, 张国文, 王文秀, 等. 点火能对丙烷-空气预混气体爆炸过程及管壁动态响应的影响 [J]. 爆炸与冲击, 2018, 38(5): 1031–1038. DOI: 10.11883/bzycj-2017-0049.

    ZHOU N, ZHANG G W, WANG W X, et al. Effect of ignition energy on the explosion process and the dynamic response of propane-air premixed gas [J]. Explosion and Shock Waves, 2018, 38(5): 1031–1038. DOI: 10.11883/bzycj-2017-0049.
    [9] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2017, 104: 107–126. DOI: 10.1016/j.ijimpeng.2017.02.002.
    [10] LI H W, TANG Z S, LI J L, et al. Investigation of vented hydrogen-air deflagrations in a congested vessel [J]. Process Safety and Environmental Protection, 2019, 129: 196–201. DOI: 10.1016/j.psep.2019.07.009.
    [11] PINI T, HANSSEN A G, SCHIAVETTI M, et al. Small scale experiments and Fe model validation of structural response during hydrogen vented deflagrations [J]. International Journal of Hydrogen Energy, 2019, 44(17): 9063–9070. DOI: 10.1016/j.ijhydene.2018.05.052.
    [12] ATANGA G, LAKSHMIPATHY S, SKJOLD T, et al. Structural response for vented hydrogen deflagrations: coupling CFD and FE tools [J]. International Journal of Hydrogen Energy, 2019, 44(17): 8893–8903. DOI: 10.1016/j.ijhydene.2018.08.085.
    [13] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 213–221. DOI: 10.1016/S0950-4230(00)00024-3.
    [14] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion & Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
    [15] 王超强, 杨石刚, 方秦, 等. 点火位置对泄爆空间甲烷-空气爆炸荷载的影响 [J]. 爆炸与冲击, 2018, 38(4): 898–904. DOI: 10.11883/bzycj-2016-0344.

    WANG C Q, YANG S G, FANG Q, et al. Effect of ignition position on overpressure in vented explosion of methane-air mixtures [J]. Explosion and Shock Waves, 2018, 38(4): 898–904. DOI: 10.11883/bzycj-2016-0344.
    [16] LI Q M, MENG H. Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model [J]. Journal of Engineering Mechanics, 2002, 128(1): 87–92. DOI: 10.1061/(ASCE)0733-9399(2002)128:1(87).
    [17] 刘晶波, 杜修力. 结构动力学[M]. 北京: 机械工业出版社, 2005: 57−59.
    [18] VAN OVERSCHEE P, DE MOOR B. Subspace Identification for linear systems: theory, implementation, applications[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996.
    [19] BRINCKER R, ZHANG L M, ANDERSEN P. Modal identification of output-only systems using frequency domain decomposition [J]. Smart Materials and Structures, 2001, 10(3): 441–445. DOI: 10.1088/0964-1726/10/3/303.
    [20] 颜王吉, 曹诗泽, 任伟新. 结构系统识别不确定性分析的Bayes方法及其进展 [J]. 应用数学和力学, 2017, 38(1): 44–59. DOI: 10.21656/1000-0887.370571.

    YAN W J, CAO S Z, REN W X. Uncertainty quantification for system identification utilizing the bayesian theory and its recent advances [J]. Applied Mathematics and Mechanics, 2017, 38(1): 44–59. DOI: 10.21656/1000-0887.370571.
    [21] 任伟新, 陈华斌. 基于响应面的桥梁有限元模型修正 [J]. 土木工程学报, 2008(12): 81–86. DOI: 10.15951/j.tmgcxb.2008.12.003.

    REN W X, CHEN H B. Response-surface based on finite element model updating of bridge structures [J]. China Civil Engineering Journal, 2008(12): 81–86. DOI: 10.15951/j.tmgcxb.2008.12.003.
    [22] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.

    HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  4354
  • HTML全文浏览量:  2280
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-25
  • 修回日期:  2020-02-18
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回