方管内汽油-空气混合气体密闭爆炸和泄爆特性研究

李国庆 张笈玮 武军 王世茂 齐晓光 张培理 齐圣

李国庆, 张笈玮, 武军, 王世茂, 齐晓光, 张培理, 齐圣. 方管内汽油-空气混合气体密闭爆炸和泄爆特性研究[J]. 爆炸与冲击, 2020, 40(10): 102101. doi: 10.11883/bzycj-2019-0416
引用本文: 李国庆, 张笈玮, 武军, 王世茂, 齐晓光, 张培理, 齐圣. 方管内汽油-空气混合气体密闭爆炸和泄爆特性研究[J]. 爆炸与冲击, 2020, 40(10): 102101. doi: 10.11883/bzycj-2019-0416
LI Guoqing, ZHANG Jiwei, WU Jun, WANG Shimao, QI Xiaoguang, ZHANG Peili, QI Sheng. Characteristics of closed and vented explosions of gasoline-air mixture in a square tube[J]. Explosion And Shock Waves, 2020, 40(10): 102101. doi: 10.11883/bzycj-2019-0416
Citation: LI Guoqing, ZHANG Jiwei, WU Jun, WANG Shimao, QI Xiaoguang, ZHANG Peili, QI Sheng. Characteristics of closed and vented explosions of gasoline-air mixture in a square tube[J]. Explosion And Shock Waves, 2020, 40(10): 102101. doi: 10.11883/bzycj-2019-0416

方管内汽油-空气混合气体密闭爆炸和泄爆特性研究

doi: 10.11883/bzycj-2019-0416
基金项目: 国家自然科学基金(51276195,51704301);国家社会科学基金(2019-SKJJ-C-041)
详细信息
    作者简介:

    李国庆(1990- ),男,博士,工程师,boyueshe@sina.com

    通讯作者:

    齐 圣(1990- ),男,博士,工程师,qscups@163.com

  • 中图分类号: O381; X932

Characteristics of closed and vented explosions of gasoline-air mixture in a square tube

  • 摘要: 为研究汽油-空气混合气体密闭爆炸和泄爆特性,采用可视化方管进行了两种爆炸模式实验研究,并基于壁面自适应局部涡黏(wall-adapting local eddy-viscosity,WALE)模型和Zimont预混火焰模型进行了数值模拟研究。结果表明:(1)泄爆工况超压-时序曲线峰值数量多于密闭爆炸工况,且泄爆工况超压-时序曲线存在剧烈的类似简谐振动的振荡,而密闭爆炸工况的爆炸超压特征参数显著高于泄爆工况;(2)密闭爆炸工况最大火焰传播速度明显小于泄爆工况,但前者在火焰传播初期即达到最大值,而后者在火焰传播末期才达到最大值;(3)密闭爆炸工况出现郁金香形火焰,而泄爆工况出现蘑菇形火焰,郁金香火焰的形成与管道内火焰锋面、流场和流场动压三者之间耦合效应相关,蘑菇形火焰由外部流场湍流和斜压效应的共同作用引起。
  • 图  1  实验系统

    1−5 refers to valves; 1#−4# refers to threaded holes

    Figure  1.  Experimental setup

    图  2  主实验台架俯视图

    Figure  2.  Vertical view of main experimental bench

    图  3  3次重复性实验所得超压-时序曲线

    Figure  3.  Overpressure-time histories obtained from three repeated experiments

    图  4  密闭管道物理模型

    Figure  4.  The physical model for the closed pipe

    图  5  泄爆管道物理模型

    Figure  5.  The physical model for the explosion relief pipe

    图  6  实验和模拟所得火焰传播速度

    Figure  6.  Comparison between experimental and simulated flame speeds

    图  7  实验和模拟超压-时序曲线对比

    Figure  7.  Comparison between experimental and simulated overpressure-time histories of the monitor point at the closed end

    图  8  密闭爆炸和泄爆超压-时序曲线

    Figure  8.  Overpressures-time curves of closed and vented explosions

    图  9  密闭爆炸和泄爆工况下油气爆炸火焰传播过程中不同时刻的图像

    Figure  9.  Flame structures in closed and vented explosions at different instants after ignition

    图  10  两种工况下火焰锋面位置-时序曲线

    Figure  10.  Flame location-time curves under two different work conditions

    图  11  两种工况火焰传播速度-时序曲线

    Figure  11.  Flame propagation speed-time curves under two different work conditions

    图  12  管道截面x=50 mm处火焰锋面和邻近速度场

    Figure  12.  Flame front and velocity fields in the vicinity of the flame front at the middle plane of x=50 mm in the pipe

    图  13  大涡模拟所得郁金香火焰三维图(c=0.5)

    Figure  13.  Three-dimensional tulip-shaped flames obtained by large eddy simulation (c=0.5)

    图  14  t=52 ms时截面x=50 mm上沿z=470 mm线的流场速度分布和大涡模拟得到的郁金香形火焰

    Figure  14.  Flow velocity and simulated tulip-shaped flame along the line of z=470 mm at the plane of x=50 mm at t=52 ms

    图  15  郁金香形火焰形成过程中不同时刻的火焰锋面、火焰锋面附近区域速度场和动压分布

    Figure  15.  Flame front, velocity and dynamic pressure distribution near the flame front during the formation of the tulip-shaped flame

    图  16  外场火焰和外场速度矢量

    Figure  16.  Velocity vector and flame structure in the outside space

    图  17  实验火焰形态和模拟所得流场结构(t=39 ms)

    Figure  17.  Experimental flame structure and simulated flow field structure (t=39 ms)

    图  18  密度梯度线和压力梯度线的分布(t=39 ms)

    Figure  18.  Distribution of density and pressure gradient lines at t=39 ms

    图  19  流线分布(t=39 ms)

    Figure  19.  Streamline distribution at t=39 ms

    表  1  密闭爆炸和泄爆工况下管道内最大爆炸超压峰值、形成最大爆炸超压峰值时间、平均升压速率和最大升压速率

    Table  1.   Maximum explosion overpressure peaks, arrival times of maximum explosion overpressures peaks, average pressure increasing rate and maximum pressure increasing rate in the tube under closed and vented explosions

    工况pmax/kPatmax/ms(dp/dt)ave/(kPa·s−1)(dp/dt)max/(MPa·s−1)
    密闭爆炸523.0215.031024.40
    泄爆 9.6 30.6240 6.81
    下载: 导出CSV
  • [1] HASSLBERGER J, KIM H K, KIM B J, et al. Three-dimensional CFD analysis of hydrogen-air-steam explosions in APR1400 containment [J]. Nuclear Engineering and Design, 2017, 320: 386–399. DOI: 10.1016/j.nucengdes.2017.06.014.
    [2] LI H W, GUO J, TANG Z S, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598–20605. DOI: 10.1016/j.ijhydene.2019.06.029.
    [3] MUKHIM E D, ABBASI T, TAUSEEF S M, et al. A method for the estimation of overpressure generated by open air hydrogen explosions [J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 99–107. DOI: 10.1016/j.jlp.2018.01.009.
    [4] VAAGSAETHER K, GAATHAUG A V, BJERKETVEDT D. PIV-measurements of reactant flow in hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2019, 44(17): 8799–8806. DOI: 10.1016/j.ijhydene.2018.10.025.
    [5] WANG L Q, MA H H, SHEN Z W. On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate [J]. International Journal of Hydrogen Energy, 2019, 44(12): 6271–6277. DOI: 10.1016/j.ijhydene.2019.01.074.
    [6] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D]. 重庆: 重庆大学, 2017.

    ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.
    [7] XIAO H H, MAKAROV D, SUN J H, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–1538. DOI: 10.1016/j.combustflame.2011.12.003.
    [8] ZHANG S H, ZHANG Q. Effect of vent size on vented hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2018, 43(37): 17788–17799. DOI: 10.1016/j.ijhydene.2018.07.194.
    [9] ZHANG Y, JIAO F Y, HUANG Q, et al. Experimental and numerical studies on the closed and vented explosion behaviors of premixed methane-hydrogen/air mixtures [J]. Applied Thermal Engineering, 2019, 159: 113907. DOI: 10.1016/j.applthermaleng.2019.113907.
    [10] ZHENG L G, DOU Z G, DU D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct [J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159–27173. DOI: 10.1016/j.ijhydene.2019.08.156.
    [11] HJERTAGER B H, FUHRE K, BJØRKHAUG M. Concentration effects on flame acceleration by obstacles in large-scale methane-air and propane-air vented explosions [J]. Combustion Science and Technology, 1988, 62(4−6): 239–256. DOI: 10.1080/00102208808924011.
    [12] KUNDU S, ZANGANEH J, MOGHTADERI B. A review on understanding explosions from methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 507–523. DOI: 10.1016/j.jlp.2016.02.004.
    [13] BAUWENS C R, CHAO J, DOROFEEV S B. Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17599–17605. DOI: 10.1016/j.ijhydene.2012.04.053.
    [14] HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447–459. DOI: 10.1016/j.jlp.2015.04.005.
    [15] QI S, DU Y, ZHANG P L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion [J]. Journal of Hazardous Materials, 2017, 323: 593–601. DOI: 10.1016/j.jhazmat.2016.06.040.
    [16] 黄子超, 司荣军, 张延松, 等. 初始温度对瓦斯爆炸特性影响的数值模拟 [J]. 煤矿安全, 2012, 43(5): 5–7; 11. DOI: 10.13347/j.cnki.mkaq.2012.05.009.

    HUANG Z C, SI R J, ZHANG Y S, et al. Numerical simulation of the influence of initial temperature on gas explosion characteristics [J]. Safety in Coal Mines, 2012, 43(5): 5–7; 11. DOI: 10.13347/j.cnki.mkaq.2012.05.009.
    [17] 姚洁, 蒋军成, 潘勇. 初始温度对可燃气体爆炸下限影响的研究 [J]. 工业安全与环保, 2012, 38(2): 48–50. DOI: 10.3969/j.issn.1001-425X.2012.02.017.

    YAO J, JIANG J C, PAN Y. The effect of initial temperature on lower explosion limit of flammable gas [J]. Industrial Safety and Environmental Protection, 2012, 38(2): 48–50. DOI: 10.3969/j.issn.1001-425X.2012.02.017.
    [18] GAO N. Effect of initial temperature on free radicals of gas explosion in restricted space [J]. Advanced Materials Research, 2013, 798−799: 138–142. DOI: 10.4028/www.scientific.net/AMR.798-799.138.
    [19] GRABARCZYK M, TEODORCZYK A, DI SARLI V, et al. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 775–779. DOI: 10.1016/j.jlp.2016.08.013.
    [20] 高娜. 初始温度和初始压力对瓦斯爆炸特性的影响研究[D]. 南京: 南京理工大学, 2016.

    GAO N. Study on influence of initial temperature and pressure on gas explosion characteristics [D]. Nanjing: Nanjing University of Science and Technology, 2016.
    [21] 杜扬, 李国庆, 吴松林, 等. T型分支管道对油气爆炸强度的影响 [J]. 爆炸与冲击, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.

    DU Y, LI G Q, WU S L, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe [J]. Explosion and Shock Waves, 2015, 35(5): 729–734. DOI: 10.11883/1001-1455(2015)05-0729-06.
    [22] 陈鹏, 李艳超, 黄福军, 等. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟 [J]. 爆炸与冲击, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.

    CHEN P, LI Y C, HUANG F J, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. DOI: 10.11883/1001-1455(2017)01-0021-06.
    [23] 王公忠, 张建华, 李登科, 等. 障碍物对预混火焰特性影响的大涡数值模拟 [J]. 爆炸与冲击, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09.

    WANG G Z, ZHANG J H, LI D K, et al. Large eddy simulation of impacted obstacles’ effects on premixed flame’s characteristics [J]. Explosion and Shock Waves, 2017, 37(1): 68–76. DOI: 10.11883/1001-1455(2017)01-0068-09.
    [24] 王亚磊, 郑立刚, 于水军, 等. 约束端面对管内甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(9): 095401. DOI: 10.11883/bzycj-2018-0249.

    WANG Y L, ZHENG L G, YU S J, et al. Effect of vented end faces on characteristics of methane explosion in duct [J]. Explosion and Shock Waves, 2019, 39(9): 095401. DOI: 10.11883/bzycj-2018-0249.
    [25] 杜扬, 李国庆, 王世茂, 等. 障碍物数量对油气泄压爆炸特性的影响 [J]. 化工学报, 2017, 68(7): 2946–2955.

    DU Y, LI G Q, WANG S M, et al. Effects of obstacle number on characteristics of vented gasoline-air mixture explosions [J]. CIESC Journal, 2017, 68(7): 2946–2955.
    [26] LI G Q, DU Y, WANG S M, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018.
    [27] 解茂昭, 贾明. 内燃机计算燃烧学[M]. 3版. 北京: 科学出版社, 2017.
    [28] 温小萍, 余明高, 邓浩鑫, 等. 小尺度受限空间内瓦斯湍流爆燃大涡模拟 [J]. 化工学报, 2016, 5(5): 1837–1843. DOI: 10.11949/j.issn.0438-1157.20151219.

    WEN X P, YU M G, DENG H X, et al. Large eddy simulation of gas turbulent deflagration in small-scale confined space [J]. CIESC Journal, 2016, 5(5): 1837–1843. DOI: 10.11949/j.issn.0438-1157.20151219.
    [29] WEN X P, YU M G, LIU Z C, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4): 730–738. DOI: 10.1016/j.jlp.2012.04.008.
    [30] LI G Q, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 529–536. DOI: 10.1016/j.jlp.2016.07.022.
    [31] MANNAA O, MANSOUR M S, ROBERTS W L, et al. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON [J]. Combustion and Flame, 2015, 162(6): 2311–2321. DOI: 10.1016/j.combustflame.2015.01.004.
    [32] WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. DOI: 10.1016/j.ijmst.2015.02.008.
    [33] QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: 10.1016/j.jlp.2016.08.005.
    [34] 温小萍. 瓦斯湍流爆燃火焰特性与多孔介质淬熄抑爆机理研究[D]. 大连: 大连理工大学, 2014.

    WEN X P. Mechanism study on flame characteristics and porous media quenching suppression of gas turbulent deflagration [D]. Dalian: Dalian University of Technology, 2014.
    [35] DUNN-RANKIN D, BARR P K, SAWYER R F. Numerical and experimental study of “tulip” flame formation in a closed vessel [J]. Symposium (International) on Combustion, 1988, 21(1): 1291–1301. DOI: 10.1016/S0082-0784(88)80360-6.
    [36] GONZALEZ M, BORGHI R, SAOUAB A. Interaction of a flame front with its self-generated flow in an enclosure: the “tulip flame” phenomenon [J]. Combustion and Flame, 1992, 88(2): 201–220. DOI: 10.1016/0010-2180(92)90052-Q.
    [37] 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013.

    XIAO H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts [D]. Hefei: University of Science and Technology of China, 2013.
    [38] ZHOU B, SOBIESIAK A, QUAN P. Flame behavior and flame-induced flow in a closed rectangular duct with a 90° bend [J]. International Journal of Thermal Sciences, 2006, 45(5): 457–474. DOI: 10.1016/j.ijthermalsci.2005.07.001.
    [39] 姜孝海. 泄爆外流场的动力学机理研究[D]. 南京: 南京理工大学, 2004.

    JIANG X H. Study on the dynamics of the external flowfield during venting [D]. Nanjing: Nanjing University of Science and Technology, 2004.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  3297
  • HTML全文浏览量:  1549
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-01-22
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回