内爆炸载荷下梯度泡沫铝夹芯管的动态响应

张鹏飞 刘志芳 李世强

张鹏飞, 刘志芳, 李世强. 内爆炸载荷下梯度泡沫铝夹芯管的动态响应[J]. 爆炸与冲击, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418
引用本文: 张鹏飞, 刘志芳, 李世强. 内爆炸载荷下梯度泡沫铝夹芯管的动态响应[J]. 爆炸与冲击, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418
ZHANG Pengfei, LIU Zhifang, LI Shiqiang. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418
Citation: ZHANG Pengfei, LIU Zhifang, LI Shiqiang. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418

内爆炸载荷下梯度泡沫铝夹芯管的动态响应

doi: 10.11883/bzycj-2019-0418
基金项目: 国家自然科学基金(11772216)
详细信息
    作者简介:

    张鹏飞(1995- ),男,硕士研究生,281549084@qq.com

    通讯作者:

    刘志芳(1971- ),女,副教授,liuzhifang@tyut.edu.cn

  • 中图分类号: O347.3

Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading

  • 摘要: 基于3D-Voronoi技术构建了泡沫铝芯层的三维细观有限元模型,对梯度泡沫铝夹芯管在内爆炸载荷下的动态响应进行了数值模拟。分析讨论了夹芯管结构内外管的壁厚、泡沫芯层的相对密度、芯层梯度分布等参数对夹芯管结构的抗爆性能与吸能性能的影响,并与无芯层的双层圆管进行了对比。结果表明:泡沫材料的相对密度可通过改变泡沫胞元大小和胞元壁厚进行调控,利用两种方式构建的夹芯管计算结果一致;保持内、外圆管总质量不变,增大内管壁厚可以有效减小外管的塑性变形,但会影响泡沫芯层的能量耗散;泡沫芯层的填充可以有效降低内管的塑性变形,正梯度泡沫铝夹芯管的抗爆性能优于均匀泡沫及负梯度泡沫夹芯管。
  • 图  1  泡沫铝夹芯管示意图

    Figure  1.  Schematic diagram of sandwich tube with gradient foam aluminum cores

    图  2  泡沫铝夹芯管的建模过程

    Figure  2.  Process of constructing aluminum foam-cored sandwich tube model

    图  3  不同网格尺寸的内、外管变形量

    Figure  3.  Deformation of inner and outer tubes with different mesh sizes

    图  4  数值模拟与实验结果对照图

    Figure  4.  Comparison between numerical simulation and experimental results

    图  5  泡沫胞元大小和胞元壁厚对模型的影响

    Figure  5.  Effect of foam cell size and cell wall thickness on the model

    图  6  不同相对密度的泡沫铝夹芯管总吸能和比吸能

    Figure  6.  Ea and Esa of sandwich tubes with different relative density foam cores

    图  7  不同壁厚比对内、外管变形量的影响

    Figure  7.  Effect of different wall thickness ratio on deformation of inner and outer tubes

    图  8  不同炸药量下夹芯管的Esa

    Figure  8.  Esa of the sandwich tube under different explosives

    图  9  梯度夹芯管变形过程

    Figure  9.  Deformation process of sandwich tube with gradient foam aluminum cores

    图  10  梯度夹芯管外管变形量随时间的变化规律和夹芯管各部分的比吸能

    Figure  10.  Outer tube special deformation and specific energe absorption of sandwich tubes with gradient foam aluminum cores

    图  11  不同炸药量下的双层圆管与泡沫铝夹芯管的变形量-时间曲线

    Figure  11.  Special deformation-time curves of double-layer circular tubes and aluminum foam sandwich tubes under different explosives

    表  1  J-C模型材料参数[14]

    Table  1.   Material parameters of J-C model

    材料密度/(kg·m−3)弹性模量/GPaA/MPaBncm
    7 8502105070.003 20.280.0641.06
    下载: 导出CSV

    表  2  空气材料参数

    Table  2.   Material parameters of air

    材料密度/(kg·m−3)C0C1C2C3C4C5C6E01/(kJ·m−3)
    空气1.29300000.40.402.5
    下载: 导出CSV

    表  3  炸药的材料参数[14]

    Table  3.   Material parameters of explosive

    材料密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2ωE02/(GJ·m−3)V
    JHL-31 6507 05061110.70.354.41.28.91.0
    下载: 导出CSV

    表  4  泡沫铝夹芯管的几何参数

    Table  4.   Geometric parameters of sandwich tubes with foam aluminum cores

    试件编号外管直径do/mm内管直径di/mm外管壁厚to/mm内管壁厚ti/mm相对密度ρ*/%试件质量M/g
    WT0103.0801.501.5406
    WT1103.3801.651.311458
    WT2103.0801.501.511458
    WT3102.7801.351.711458
    WT4102.4801.201.911458
    WT5102.1801.052.111458
    WT6103.0801.501.514472
    WT7103.0801.501.517486
    下载: 导出CSV

    表  5  梯度泡沫铝夹芯管的几何参数

    Table  5.   Geometric parameters of sandwich tubes with gradient foam aluminum cores

    试件编号外管直径do/mm内管直径di/mm外管壁厚to/mm内管壁厚ti/mm$\rho _{\simfont\text{芯层1}}^{*} $/%$\rho _{\simfont\text{芯层2}}^{*} $/%试件质量M/g
    N-WT1109.8801.51.56.315493
    U-WT2109.8801.51.51111493
    P-WT3109.8801.51.5157.5493
    下载: 导出CSV

    表  6  数值模拟与实验结果的对比

    Table  6.   Comparison between numerical simulation and experimental results

    试件编号内管直径/mm外管直径/mm试件长度/mm相对密度/%数值模拟/mm实验结果/mm误差/%
    内管外管内管外管内管外管
    T167 9010011 9.900.60 9.80.58 1.0 3.3
    T7991221001110.452.0711.92.3013.810.0
    T89912210016 9.352.3011.32.4017.0 4.3
    下载: 导出CSV
  • [1] 刘志芳, 王军, 秦庆华. 横向冲击载荷下泡沫铝夹芯双圆管的吸能研究 [J]. 兵工学报, 2017, 38(11): 2259–2267. DOI: 10.3969/j.issn.1000-1093.2017.11.024.

    LIU Z F, WANG J, QIN Q H. Research on energy absorption of aluminum foam-filled double circular tubes under lateral impact loadings [J]. Acta Armamentarii, 2017, 38(11): 2259–2267. DOI: 10.3969/j.issn.1000-1093.2017.11.024.
    [2] LI S Q, WANG Z H, WU G Y, et a1. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading [J]. Composites Part A: Applied Science And Manufacturing, 2014, 56: 262–271. DOI: 10.1016/j.compositesa.2013.10.019.
    [3] SHEN J H, LU G X, ZHAO L M, et al. Short sandwich tubes subjected to internal explosive loading [J]. Engineering Structures, 2013, 55: 56–65. DOI: 10.1016/j.engstruct.2011.12.005.
    [4] CHENG Y S, LIU M X, ZHANG P, et al. The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading—Experimental investigations [J]. International Journal of Mechanical Sciences, 2018, 145: 378–388. DOI: 10.1016/j.ijmecsci.2018.07.030.
    [5] LIU X R, TIAN X G, LU T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores [J]. Composite Structures, 2012, 94(8): 2485–2493. DOI: 10.1016/j.compstruct.2012.02.029.
    [6] NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast—Part 1: experiments [J]. Composite Structures, 2009, 91(4): 433–441. DOI: 10.1016/j.compstruct.2009.04.009.
    [7] KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts—Part 2: Numerical simulation [J]. Compos Structures, 2009, 91(4): 442–450. DOI: 10.1016/j.compstruct.2009.04.010.
    [8] KARAGIOZOVA D, LANGDON G S, NURICK G N, et al. The influence of a low density foam sandwich core on the response of a partially confined steel cylinder to internal air-blast [J]. International Journal of Impact Engineering, 2016, 92: 32–49. DOI: 10.1016/j.ijimpeng.2015.09.010.
    [9] SHEN C J, LU G, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. DOI: 10.1016/j.ijimpeng.2014.02.015.
    [10] GARDNER N, WANG E, SHUKLA A. Performance of functionally graded sandwich composite beams under shock wave loading [J]. Composite Structures, 2012, 94(5): 1755–1770. DOI: 10.1016/j.compstruct.2011.12.006.
    [11] LIANG M Z, LI X R, LIN Y L, et al. Dynamic compressive behaviors of two-layer graded aluminum foams under blast loading [J]. Materials, 2019, 12(9): 1445. DOI: 10.3390/ma12091445.
    [12] 范志庚, 陈常青, 胡文军, 等. 泡孔微结构对弹性泡沫材料宏观压缩力学性能的影响分析 [J]. 机械强度, 2015, 37(5): 892–897. DOI: 10.16579/j.issn.1001.9669.2015.05.005.

    FAN Z G, CHEN C Q, HU W J, et al. Effects of microstructure on the large compression behavior of rubber foams [J]. Journal of Mechanical Strength, 2015, 37(5): 892–897. DOI: 10.16579/j.issn.1001.9669.2015.05.005.
    [13] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [14] LIANG M Z, LU F Y, ZHANG G D, et al. Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast [J]. Composites Part B: Engineering, 2017, 125: 134–143. DOI: 10.1016/j.compositesb.2017.05.073.
    [15] LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. DOI: 10.1016/j.tws.2016.12.016.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  4842
  • HTML全文浏览量:  1603
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2020-02-12
  • 网络出版日期:  2020-05-25
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回