正多边形基多胞薄壁管的吸能特性

刘亚军 何玉龙 刘姗姗 李志强

刘亚军, 何玉龙, 刘姗姗, 李志强. 正多边形基多胞薄壁管的吸能特性[J]. 爆炸与冲击, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423
引用本文: 刘亚军, 何玉龙, 刘姗姗, 李志强. 正多边形基多胞薄壁管的吸能特性[J]. 爆炸与冲击, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423
LIU Yajun, HE Yulong, LIU Shanshan, LI Zhiqiang. Energy absorption capacity of regular polygon-based multi-cell tubes[J]. Explosion And Shock Waves, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423
Citation: LIU Yajun, HE Yulong, LIU Shanshan, LI Zhiqiang. Energy absorption capacity of regular polygon-based multi-cell tubes[J]. Explosion And Shock Waves, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423

正多边形基多胞薄壁管的吸能特性

doi: 10.11883/bzycj-2019-0423
基金项目: 国家自然科学基金(11672199,11972244);山西省自然科学基础研究项目(201601D011011)
详细信息
    作者简介:

    刘亚军(1993- ),男,硕士研究生,liuyajun0912@link.tyut.edu.cn

    通讯作者:

    李志强(1973- ),男,博士,教授,lizhiqiang@tyut.edu.cn

  • 中图分类号: O347.1

Energy absorption capacity of regular polygon-based multi-cell tubes

  • 摘要: 多胞薄壁结构具有轻量化、高比吸能的特点,在汽车、轮船、航空航天等领域得到了广泛的应用。已有研究表明结构的耐撞性与结构的拓扑方式及胞元数量密切相关。为了研究结构形状和拓扑优化对其吸能效果的影响,基于正多边形结构,通过内嵌多边形和外接圆管的方式设计了两类新型多胞薄壁结构,并对这两类多胞薄壁结构进行准静态和落锤冲击实验,利用高速相机记录结构的变形模式,并定量分析了结构的吸能特性。实验结果表明:除正三角形二级内嵌四边形所得结构在准静态加载实验后期出现了局部失稳现象外,其余结构在准静态和落锤冲击实验过程中均保持垂直受压,结构变形模式与吸能效果较好。通过比较两类结构的实验结果得出:不论是在准静态加载还是在落锤冲击的情况下,内嵌多边形结构的各项吸能指标都明显优于外接圆管的结构;同等质量的情况下,内嵌四边形结构的吸能效果明显优于内嵌三角形的结构。
  • 图  1  两类新型薄壁结构

    Figure  1.  Two types of novel thin-wall structures

    图  2  实验试件

    Figure  2.  Specimens used in tests

    图  3  准静态轴向压缩实验装置(万能试验机)

    Figure  3.  Quasi-static axial compression test setup with universal testing machine

    图  4  落锤冲击实验装置

    Figure  4.  Drop-hammer impact experimental setups

    图  5  两类结构4个试件在准静态加载时的典型变形模式与力-位移曲线之间的对应关系

    Figure  5.  Typical deformation modes and their corresponding force-displacement curves for four specimens of two kinds of structures under quasi-static axial compression

    图  6  准静态加载能量-位移曲线

    Figure  6.  Energy-displacement curves under quasi-static axial compression

    图  7  两类结构4个试件在动态冲击实验时的典型变形模式与力-位移曲线之间的对应关系

    Figure  7.  Typical deformation modes and their corresponding force-displacement curves for four specimens of two kinds of structures under axial impact

    图  8  落锤实验能量-位移曲线

    Figure  8.  Energy-displacement curves under axial impact

    表  1  准静态加载下的吸能性能指标(加载速度为5 mm/min,压缩位移为65 mm)

    Table  1.   Energy absorption parameters under quasi-static axial compression (the loading speed is 5 mm/min and the final displacement is 65 mm)

    试件编号试件质量/kg总吸能/kJ峰值力/kN平均压缩力/kN压缩力效率比吸能/(kJ·kg−1)
    T3-30.1071.8842.7428.920.6817.57
    T3-40.1072.5350.1938.920.7823.64
    T3-C0.1131.1835.6118.150.5110.44
    Q4-C0.1131.0934.0616.770.49 9.65
    下载: 导出CSV

    表  2  落锤实验能量数据

    Table  2.   Energy data in axial impact tests

    试件编号落锤初始高度/mm落锤重力势能/kJ试件被压缩高度/mm重力势能增量/kJ总能量/kJ
    T3-314501.8654.960.071.93
    T3-422402.8757.430.072.94
    T3-C 7330.9444.980.061.00
    Q4-C 9541.2255.010.071.29
    下载: 导出CSV

    表  3  落锤实验吸能性能指标

    Table  3.   Energy absorption parameters under axial impact

    试件编号质量/kg总吸能/kJ峰值力/kN平均压缩力/kN压缩力效率单位位移比吸能/(kJ·kg−1·mm−1)
    T3-30.1081.9351.5235.120.680.325
    T3-40.1072.9470.2051.190.730.478
    T3-C0.1141.0038.9422.430.580.195
    Q4-C0.1131.2939.8223.450.590.208
    下载: 导出CSV
  • [1] 张涛, 吴英友, 朱显明, 等. 多边形截面薄壁管撕裂卷曲吸能研究 [J]. 爆炸与冲击, 2007, 27(3): 223–229. DOI: 10.11883/1001-1455(2007)03-0223-07.

    ZHANG T, WU Y Y, ZHU X M, et al. Energy absorption in splitting metal tubes with polygonal section [J]. Explosion and Shock Waves, 2007, 27(3): 223–229. DOI: 10.11883/1001-1455(2007)03-0223-07.
    [2] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. DOI: 10.1093/qjmam/13.1.10.
    [3] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. DOI: 10.1115/1.3167137.
    [4] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8.
    [5] ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes [J]. International Journal of Impact Engineering, 1986, 4(4): 243–270. DOI: 10.1016/0734-743X(86)90017-5.
    [6] LANGSETH M, HOPPERSTAD O S. Static and dynamic axial crushing of square thin-walled aluminum extrusions [J]. International Journal of Impact Engineering, 1996, 18(7−8): 949–968. DOI: 10.1016/S0734-743x(96)00025-5.
    [7] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. DOI: 10.1016/S0263-8231(01)00006-4.
    [8] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency [J]. Thin-Walled Structures, 2002, 40(4): 311–327. DOI: 10.1016/S0263-8231(01)00069-6.
    [9] ZHANG X, CHENG G D, ZHANG H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures [J]. Thin-Walled Structures, 2006, 44(11): 1185–1191. DOI: 10.1016/j.tws.2006.09.002.
    [10] NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures, 2011, 49(1): 1–12. DOI: 10.1016/j.tws.2010.07.002.
    [11] TANG Z L, LIU S T, ZHANG Z H. Analysis of energy absorption characteristics of cylindrical multi-cell columns [J]. Thin-Walled Structures, 2013, 62: 75–84. DOI: 10.1016/j.tws.2012.05.019.
    [12] ALAVI NIA A, PARSAPOUR M. An investigation on the energy absorption characteristics of multi-cell square tubes [J]. Thin-Walled Structures, 2013, 68: 26–34. DOI: 10.1016/j.tws.2013.01.010.
    [13] HONG W, FAN H L, XIA Z C, et al. Axial crushing behaviors of multi-cell tubes with triangular lattices [J]. International Journal of Impact Engineering, 2014, 63: 106–117. DOI: 10.1016/j.ijimpeng.2013.08.007.
    [14] ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. DOI: 10.1016/j.ijimpeng.2013.12.002.
    [15] WU S Z, ZHENG G, SUN G Y, et al. On design of multi-cell thin-wall structures for crashworthiness [J]. International Journal of Impact Engineering, 2016, 88: 102–117. DOI: 10.1016/j.ijimpeng.2015.09.003.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  4398
  • HTML全文浏览量:  1682
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-05-21
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回