球形颗粒遮弹层对高速侵彻弹体的作用机理

郭虎 何丽灵 陈小伟 陈刚 李继承

郭虎, 何丽灵, 陈小伟, 陈刚, 李继承. 球形颗粒遮弹层对高速侵彻弹体的作用机理[J]. 爆炸与冲击, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
引用本文: 郭虎, 何丽灵, 陈小伟, 陈刚, 李继承. 球形颗粒遮弹层对高速侵彻弹体的作用机理[J]. 爆炸与冲击, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
Citation: GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428

球形颗粒遮弹层对高速侵彻弹体的作用机理

doi: 10.11883/bzycj-2019-0428
基金项目: 国家自然科学基金(11302210,11572299,11602258)
详细信息
    作者简介:

    郭 虎(1986- ),男,博士研究生,助理研究员,guohu@mail.ustc.edu.cn

    通讯作者:

    何丽灵(1984- ),女,博士,副研究员,heliling1984@139.com

  • 中图分类号: O385

Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates

  • 摘要: 在钻地弹威慑之下,重要目标工事外覆盖遮弹层是常见加固和防护手段。硬质球形颗粒(以下简称颗粒)是常见的遮弹层组成结构。本文中将研究高速侵彻弹体与颗粒作用机理,分析遮弹效率的控制因素。首先,基于动态空腔膨胀理论,计及靶的自由面效应和颗粒强度差异,建立了靶对弹体侵彻阻力的表征模型。然后,采用弹靶分离计算方法,模拟并分析了斜侵彻含球形颗粒有限大高强混凝土时弹体的运动与变形,研究颗粒的强度、位置及尺寸对来袭弹侵彻行为的影响规律。结果表明,颗粒的遮弹作用主要取决于与其作用时弹体的姿态,其随颗粒位置变化无明显规律;颗粒强度越高,遮弹效果越好;颗粒半径从1倍到10倍弹径变化时,颗粒对弹体的作用机理从弹道偏转为主转变为弹道偏转与侵彻阻力增加两者耦合。因此,为达到良好的遮弹效果,单层球形颗粒密排遮弹层的颗粒半径建议在5倍弹体直径之上;若采用较小颗粒制作遮弹层,建议采用多层错排方式,且遮弹层厚度须在10倍弹径之上。
  • 图  1  侵彻过程中混凝土靶空腔膨胀响应分区

    Figure  1.  Partition of a concrete target during penetration based on the dynamic cavity expansion model

    图  2  非正侵彻弹体与靶自由面位置示意图

    Figure  2.  Scheme of a projectile obliquely penetrating into a target

    图  3  自由面衰减函数随弹体表面质点离自由面距离的变化

    Figure  3.  Change of the discount factor of free-surface effect with the distance from the target free surface to the projectile surface

    图  4  有限元软件中弹体表面压力载荷边界施加流程图[16]

    Figure  4.  Flow chart of pressure on projectile surface in FEM software[16]

    图  5  弹靶示意图

    Figure  5.  Scheme of the projectile and target for oblique penetration

    图  6  弹体转动角度

    Figure  6.  Rotation angle of the projectile

    图  7  颗粒位置及强度变化时弹尖xy平面内运动轨迹

    Figure  7.  Trajectory of projectile nose tip in xy plane with variation of location and strength of aggregate

    图  8  侵彻后弹体的等效塑性应变分布及形状对比

    Figure  8.  Equivalent plastic strain distribution and deformation of projectile after penetration

    图  9  不同工况下弹体内能占总能量比值随时间的变化

    Figure  9.  Change of internal energy-to-total-energy ratio of the projectile with time in different cases

    图  10  不同工况下弹与球形颗粒作用位置及距离

    Figure  10.  Interaction distance between projectile and aggregate in different cases

    图  11  颗粒位置及强度变化时,弹体质心x向阻力及过质心z向力矩的时间历程(125 kHz低通滤波)

    Figure  11.  Time histories of x-directional resistant force and z-directional moment through projectile mass center for projectile with variation of location and strength of spherical aggregate (filtered by low pass filter with cutoff frequency 125 kHz)

    图  12  参考工况下不同时刻弹体变形及弹靶相对位置

    Figure  12.  Projectile deformation and relative location of projectile and target at different times in the reference case

    图  13  W-3工况下不同时刻弹体变形及弹靶相对位置

    Figure  13.  Projectile deformation and relative location of projectile and target at different times in Case W-3

    图  14  颗粒尺寸变化时弹尖在xy平面内的运动轨迹

    Figure  14.  Trajectory of nose tip in xy plane with variation of aggregate diameter

    图  15  颗粒尺寸变化时,弹体质心x向阻力及过质心z向力矩的时间历程(125 k Hz低通滤波)

    Figure  15.  Time histories of x-directional resistant force and z-directional moment through projectile mass center for the projectile with variation of aggregate diameter (filtered by low pass filter with cutoff frequency 125 k Hz)

    表  1  半径为5倍弹径球体嵌埋位置及强度对弹体运动和变形的影响

    Table  1.   Movement and deformation of the projectile with the location and strength variation of the aggregate whose radius is 5 times of the projectile diameter

    工况速度/(m·s−1)斜角/(°)攻角/(°)球形颗粒|弹尖位移|max/mm有效侵深/
    mm
    最大转角/(°)弹体变形
    向下向右球心坐标/mmg1xyzzy
    Ref.1266301.01.5329 66 8252 17.2 2.5完整
    W-11266301.01.5(50, 0, 0)2250 44 2239−21.2 −1.8轻微弯曲
    W-21266301.01.5(100, 0, 0)2266 5313204 17.4 2.5完整
    W-31266301.01.5(200, 0, 0)223914027163 84.2 59.6弯曲
    W-41266301.01.5(200, 25, 0)2263 50 8203 16.2 2.5完整
    W-51266301.01.5(200, 50, 0)2277 3312223 11.6 2.7轻微弯曲
    W-61266301.01.5(200, 0, 0)4184 7913143232.4203.1弯曲
     注:(1)表中Ref.是Reference case的简称,表 2中Ref.与此内涵一致,不再赘述。
    (2)观察方向沿弹体运动方向,从弹尾至弹尖。
    (3)|弹尖位移|max表示弹尖位移最大值,表 2中|弹尖位移|max与此内涵一致。
    (4)最大转角表示转角绝对值最大时的转角,正值表示逆时针方向转动,负值表示顺时针方向转动,表 2中内涵与此一致。
    下载: 导出CSV

    表  2  球心(200,35,0)处球体半径对弹体运动的影响

    Table  2.   Movement of the projectile when spherical aggregates with different radii located at (200,35,0)

    工况速度/(m·s−1)斜角/(°)攻角/(°)球形颗粒|弹尖位移|max/mm有效侵深/mmz轴最大转角/(°)
    向下向右半径/mmg1xy
    Ref.1 266301.01.532966252 17.2
    W-71 266301.01.5 7.1231033264−24.1
    W-81 266301.01.514.2229534251−31.0
    W-91 266301.01.535.5226644208 12.3
    W-101 266301.01.571.0223538185 12.0
    下载: 导出CSV
  • [1] 任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护[M]. 北京: 科学出版社, 2016: 1−19.
    [2] 郭志昆, 陈万祥, 袁正如, 等. 新型偏航遮弹层选型分析与试验 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 505–512.

    GUO Z K, CHEN W X, YUAN Z R, et al. Structural selection and testing of new yaw-inducing bursting layer [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(5): 505–512.
    [3] 孙岩, 汤文辉, 张若棋. 单层密排刚玉球对深层侵彻弹防护效应的试验研究 [J]. 强度与环境, 2005, 32(1): 56–58. DOI: 10.3969/j.issn.1006-3919.2005.01.009.

    SUN Y, TANG W H, ZHANG R Q. A study on the protective ability of tightly arrayed corundum spheres for deeply penetrating projectile [J]. Structure and Environment Engineering, 2005, 32(1): 56–58. DOI: 10.3969/j.issn.1006-3919.2005.01.009.
    [4] PENG Y, WU H, FANG Q, et al. Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm [J]. International Journal of Impact Engineering, 2016, 88: 201–213. DOI: 10.1016/j.ijimpeng.2015.10.011.
    [5] 国盛兵, 潘越峰, 高培正, 等. 防护工程遮弹层研究新进展 [J]. 防护工程, 2005, 27(1): 30–34.
    [6] 周布奎, 周早生, 唐德高. 单层紧密排列刚玉球遮弹层刚玉球几何尺寸对弹丸侵彻效应的影响 [J]. 防护工程, 2003, 25(1): 35–39.
    [7] 穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8. DOI: 10.3969/j.issn.1004-244X.2012.05.002.

    MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8. DOI: 10.3969/j.issn.1004-244X.2012.05.002.
    [8] LONGCOPE Jr D B, TABBARA M R, JUNG J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects [R]. Albuquerque: Sandia National Laboratories, 1999. DOI: 10.2172/7224.
    [9] MACEK R W, DUFFEY T A. Finite cavity expansion method for near-surface effects and layering during earth penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 239–258. DOI: 10.1016/S0734-743X(99)00156-6.
    [10] WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(10): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0.
    [11] WARREN T L. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. International Journal of Impact Engineering, 2002, 27(5): 475–496. DOI: 10.1016/S0734-743X(01)00154-3.
    [12] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [13] 何涛, 文鹤鸣. 球形弹对金属靶板侵彻问题的数值模拟 [J]. 爆炸与冲击, 2006, 26(5): 456–461.

    HE T, WEN H M. Computer simulations of the penetration of metal targets by spherical-nosed projectiles [J]. Explosion and Shock Waves, 2006, 26(5): 456–461.
    [14] 何涛, 文鹤鸣. 靶体响应力函数的确定方法及其在侵彻力学中的应用 [J]. 中国科学技术大学学报, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.

    HE T, WEN H M. Determination of the analytical forcing function of target response and its applications in penetration mechanics [J]. Journal of University of Science and Technology of China, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.
    [15] 孔祥振, 方秦, 吴昊. 考虑靶体自由表面和开裂区影响的可变形弹体斜侵彻脆性材料的终点弹道分析 [J]. 兵工学报, 2014, 35(6): 814–821.

    KONG X Z, FANG Q, WU H. Terminal ballistics study of deformable projectile penetrating brittle material targets for free-surface and crack region effects [J]. Acta Armamentarii, 2014, 35(6): 814–821.
    [16] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [17] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [18] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [19] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [20] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1−4): 224–284. DOI: 10.1016/j.ijimpeng.2005.04.005.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  3620
  • HTML全文浏览量:  1351
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-09
  • 修回日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回