长杆弹超高速侵彻半无限混凝土靶实验研究及开坑分析

王杰 武海军 周婕群 石啸海 李金柱 皮爱国 黄风雷

王杰, 武海军, 周婕群, 石啸海, 李金柱, 皮爱国, 黄风雷. 长杆弹超高速侵彻半无限混凝土靶实验研究及开坑分析[J]. 爆炸与冲击, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439
引用本文: 王杰, 武海军, 周婕群, 石啸海, 李金柱, 皮爱国, 黄风雷. 长杆弹超高速侵彻半无限混凝土靶实验研究及开坑分析[J]. 爆炸与冲击, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439
WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439
Citation: WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439

长杆弹超高速侵彻半无限混凝土靶实验研究及开坑分析

doi: 10.11883/bzycj-2019-0439
基金项目: 国家自然科学基金(11572048,11521062);国家自然科学基金委员会与中国工程物理研究院联合基金(U1730128)
详细信息
    作者简介:

    王 杰(1993- ),男,博士,工程师,wjbit0129@126.com

    通讯作者:

    武海军(1974- ),男,博士,教授,wuhj@bit.edu.cn

  • 中图分类号: O385

Experiment research and crater analysis of long rodhypervelocity penetration into concrete

  • 摘要: 随着超高速动能武器的发展,长杆弹超高速侵彻混凝土靶机理成为当前的研究热点。为了探究长杆弹超高速侵彻混凝土靶的侵彻机理和开坑规律,本文中开展了TU1铜、Q235钢两类长杆弹以初速度1.8~2.4 km/s正侵彻强度26.5、42.1 MPa混凝土靶的超高速实验。结合文献和本文中的实验数据,对开坑直径和开坑体积进行量纲分析,基于开坑截面的弓形形貌几何关系,得到了开坑深度预测公式。结果表明:靶面开坑尺寸明显大于中低速侵彻时的靶面开坑尺寸,在分析侵彻机理的过程中不能忽略开坑阶段;弹体发生严重的长度缩短,直至最后完全侵蚀,弹洞半径明显大于弹体半径,说明长杆弹超高速侵彻半无限混凝土靶属于半流体侵彻机制。另外,在超高速侵彻条件下:弹体长度是影响侵彻深度的最主要参数;侵彻深度随弹体长度和密度的增大而增大,受弹体强度影响不大。
  • 图  1  钨合金长杆弹和混凝土靶的破坏[24]

    Figure  1.  Tungsten long rod and failure of concrete target[24]

    图  2  超高速侵彻混凝土靶的开坑形貌和开坑截面CT扫描[27]

    Figure  2.  Crater and CT scanning of crater section of long rod hypervelocity penetration into concrete[27]

    图  3  长杆弹实物

    Figure  3.  Photo of long rods

    图  4  混凝土靶体实物

    Figure  4.  Photos of concrete targets

    图  5  发射结构及其尺寸

    Figure  5.  Launch structures and their geometries

    图  6  发射结构实物

    Figure  6.  Photos of launch structures

    图  7  OBB测速装置

    Figure  7.  OBB velocity measure device

    图  8  测速装置实物

    Figure  8.  Photo of velocity measure device

    图  9  X射线照片

    Figure  9.  X-ray flash photo

    图  10  靶架实物

    Figure  10.  Photo of target holder

    图  11  靶体放置

    Figure  11.  Photo of target placement

    图  12  实验回收的弹体碎渣

    Figure  12.  Recovered debris of long rod after experiment

    图  13  靶面开坑

    Figure  13.  Crater of target surface

    图  14  剖靶后的开坑和弹洞截面

    Figure  14.  Crater and hole after cutting target

    图  15  开坑直径与动能的实验数据和拟合

    Figure  15.  Fitting of crater diameter and kinetic energy experimental data

    图  16  开坑体积与动能的实验数据和拟合

    Figure  16.  Fitting of crater volume and kinetic energy experimental data

    图  17  开坑直径的拟合

    Figure  17.  Fitting of crater diameter

    图  18  开坑体积的拟合

    Figure  18.  Fitting of crater volume

    图  19  弓形开坑截面

    Figure  19.  Section of bow-shaped crater

    表  1  弹体的结构和材料参数

    Table  1.   Geometric and material parameters of long rods

    长度/mm直径/mm长径比材料强度/MPa密度/(g·cm−3)质量/g
    1461014.6TU1无氧铜1208.89102.43
    1081010.8TU1无氧铜1208.89 69.80
    1461014.6Q235钢2357.83 89.85
    1081010.8Q235钢2357.83 61.60
    下载: 导出CSV

    表  2  长杆弹超高速侵彻半无限混凝土靶的实验条件

    Table  2.   Experimental conditions of long rods hypervelocity penetration into semi-infinite concrete targets

    实验弹体材料Lp/Dp发射结构质量/g靶体强度/MPa速度/(km·s−1)
    1TU114.6222.6526.52.337 5
    2TU114.6222.6242.12.157 5
    3Q23514.6210.2942.12.157 5
    4TU110.8166.1026.52.041 0
    5Q23510.8157.1126.52.014 0
    6TU114.6222.6526.51.841 0
    下载: 导出CSV

    表  3  长杆弹超高速侵彻半无限混凝土靶的实验结果

    Table  3.   Experimental results of long rods hypervelocity penetration into semi-infinite concrete targets

    实验开坑直径/mm开坑体积/L开坑深度/mm侵彻深度/mm弹洞直径/mm
    171430.4617145063.11
    257215.5312037049.50
    360823.1816235042.51
    461516.8111631052.46
    561020.7114428846.19
    659520.0214236146.94
    下载: 导出CSV

    表  4  开坑深度预测结果

    Table  4.   Prediction of crater depths

    本文
    实验
    开坑深度/mm相对误差/%文献[28]
    实验
    开坑深度/mm相对误差/%
    实验预测实验预测
    1171119.40−30.180131.520.33−38.76
    2120 96.99−19.172522.717.15−24.43
    3162 93.38−42.360421.516.79−21.92
    4116 97.87−15.632424.715.60−36.85
    5144 94.31−34.512921.015.21−27.58
    6142101.79−28.320221.514.64−31.92
    下载: 导出CSV
  • [1] FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743X(92)90167-R.
    [2] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [3] QIAN L X, YANG Y B, LIU T. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets [J]. International Journal of Impact Engineering, 2000, 24(9): 947–955. DOI: 10.1016/S0734-743X(00)00008-7.
    [4] 吴祥云, 李永池, 何翔, 等. 细长弹体侵彻混凝土的机理研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.

    WU X Y, LI Y C, HE X, et al. On mechanism of slender projectile penetrating into concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.
    [5] 温志鹏, 王玉祥, 吕本明, 等. 弹体垂直侵彻混凝土介质开坑深度的计算方法 [J]. 常州工学院学报, 2005, 18(S1): 82–84.
    [6] 刘海鹏, 高世桥, 金磊. 弹丸侵彻混凝土靶板成坑实验及量纲分析[C] // 第十届全国冲击动力学学术会议论文摘要集. 太原: 中国力学学会爆炸力学专业委员会冲击动力学专业组, 2011.
    [7] 刘海鹏, 高世桥, 金磊. 弹侵彻混凝土靶面成坑机理分析[C] // 第六届全国强动载效应及防护学术会议暨2014年复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京: 中国力学学会爆炸力学专业委员会, 2014.
    [8] 刘海鹏, 高世桥, 金磊, 等. 弹侵彻混凝土靶面成坑的分阶段分析 [J]. 兵工学报, 2009, 30(S2): 52–56.

    LIU H P, GAO S Q, JIN L, et al. Phase analysis on crater-forming of projectile penetrating into concrete target [J]. Acta Armamentarii, 2009, 30(S2): 52–56.
    [9] 闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究[D]. 北京: 北京理工大学, 2015.
    [10] WU H J, WANG Y N, HUANG F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1 100 m/s [J]. International Journal of Modern Physics B, 2008, 22(9−11): 1087–1093.
    [11] 薛建锋, 沈培辉, 王晓鸣. 弹体斜侵彻混凝土靶面的开坑阶段分析 [J]. 南京理工大学学报, 2016, 40(1): 72–76, 83. DOI: 10.14177/j.cnki.32-1397n.2016.40.01.012.

    XUE J F, SHEN P H, WANG X M. Analysis on crater-forming of projectile obliquely penetrating into concrete target [J]. Journal of Nanjing University of Science and Technology, 2016, 40(1): 72–76, 83. DOI: 10.14177/j.cnki.32-1397n.2016.40.01.012.
    [12] 周宁, 任辉启, 沈兆武, 等. 弹丸侵彻混凝土和钢筋混凝土的实验 [J]. 中国科学技术大学学报, 2006, 36(10): 1021–1027. DOI: 10.3969/j.issn.0253-2778.2006.10.001.

    ZHOU N, REN H Q, SHEN Z W, et al. Experimental on the projectile penetration concrete targets and reinforced concrete targets [J]. Journal of University of Science and Technology of China, 2006, 36(10): 1021–1027. DOI: 10.3969/j.issn.0253-2778.2006.10.001.
    [13] 周宁, 任辉启, 沈兆武, 等. 卵形头部弹丸侵彻钢筋混凝土的工程解析模型 [J]. 振动与冲击, 2007, 26(4): 73–76. DOI: 10.3969/j.issn.1000-3835.2007.04.017.

    ZHOU N, REN H Q, SHEN Z W, et al. Engineering analytical model for ogive-nose projectiles to penetrate into semi-infinite reinforced concrete targets [J]. Journal of Vibration and Shock, 2007, 26(4): 73–76. DOI: 10.3969/j.issn.1000-3835.2007.04.017.
    [14] 黄民荣, 顾晓辉, 高永宏. 刚性弹丸侵彻钢筋混凝土的实验和简化分析模型 [J]. 实验力学, 2009, 24(4): 283–290.

    HUANG M R, GU X H, GAO Y H. Experiment and simplified analytical model for penetration of rigid projectile in a reinforced concrete target [J]. Journal of Experimental Mechanics, 2009, 24(4): 283–290.
    [15] 张爽. 弹体侵彻/贯穿钢筋混凝土靶机理与弹道轨迹研究[D]. 北京: 北京理工大学, 2018.
    [16] MELOSH H J. Cratering mechanics-observational, experimental, and theoretical [J]. Annual Review of Earth and Planetary Sciences, 1980, 8: 65–93. DOI: 10.1146/annurev.ea.08.050180.000433.
    [17] HOLSAPPLE K A. The scaling of impact processes in planetary sciences [J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 333–373. DOI: 10.1146/annurev.ea.21.050193.002001.
    [18] DUFRESNE A, POELCHAU M H, KENKMANN T, et al. Crater morphology in sandstone targets: the MEMIN impact parameter study [J]. Meteoritics & Planetary Science, 2013, 48(1): 50–70. DOI: 10.1111/maps.12024.
    [19] POELCHAU M H, KENKMANN T, THOMA K, et al. The MEMIN research unit: scaling impact cratering experiments in porous sandstones [J]. Meteoritics and Planetary Science, 2013, 48(1): 8–22. DOI: 10.1111/maps.12016.
    [20] ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33(1−12): 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009.
    [21] WÜNNEMANN K, COLLINS G S, MELOSH H J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets [J]. Icarus, 2006, 180(2): 514–527. DOI: 10.1016/j.icarus.2005.10.013.
    [22] KENKMANN T, WÜNNEMANN K, DEUTSCH A, et al. Impact cratering in sandstone: the MEMIN pilot study on the effect of pore water [J]. Meteoritics & Planetary Science, 2011, 46(6): 890–902. DOI: 10.1111/j.1945-5100.2011.01200.x.
    [23] 邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.

    DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
    [24] DAWSON A, BLESS S, LEVINSON S, et al. Hypervelocity penetration of concrete [J]. International Journal of Impact Engineering, 2008, 35(12): 1484–1489. DOI: 10.1016/j.ijimpeng.2008.07.069.
    [25] GOLD V M, VRADIS G C, PEARSON J C. Concrete penetration by eroding projectiles: experiments and analysis [J]. Journal of Engineering Mechanics, 1996, 122(2): 145–152. DOI: 10.1061/(ASCE)0733-9399(1996)122:2(145).
    [26] GOLD V M, VRADIS G C. Analysis of penetration resistance of concrete [J]. Journal of Engineering Mechanics, 1998, 124(3): 328–338. DOI: 10.1061/(ASCE)0733-9399(1998)124:3(328).
    [27] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [28] KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  3546
  • HTML全文浏览量:  1261
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2020-03-16
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回