地铁隧道毫秒延时爆破环境振动特性研究

赵凯 赵丁凤 张东 庄海洋 陈国兴

赵凯, 赵丁凤, 张东, 庄海洋, 陈国兴. 地铁隧道毫秒延时爆破环境振动特性研究[J]. 爆炸与冲击, 2020, 40(10): 105201. doi: 10.11883/bzycj-2019-0445
引用本文: 赵凯, 赵丁凤, 张东, 庄海洋, 陈国兴. 地铁隧道毫秒延时爆破环境振动特性研究[J]. 爆炸与冲击, 2020, 40(10): 105201. doi: 10.11883/bzycj-2019-0445
ZHAO Kai, ZHAO Dingfeng, ZHANG Dong, ZHUANG Haiyang, CHEN Guoxing. Characteristics of environmental vibration induced by millisecond-delay blasting in metro tunnel excavation[J]. Explosion And Shock Waves, 2020, 40(10): 105201. doi: 10.11883/bzycj-2019-0445
Citation: ZHAO Kai, ZHAO Dingfeng, ZHANG Dong, ZHUANG Haiyang, CHEN Guoxing. Characteristics of environmental vibration induced by millisecond-delay blasting in metro tunnel excavation[J]. Explosion And Shock Waves, 2020, 40(10): 105201. doi: 10.11883/bzycj-2019-0445

地铁隧道毫秒延时爆破环境振动特性研究

doi: 10.11883/bzycj-2019-0445
基金项目: 国家自然科学基金(51608267,51978335);国家重点研发计划(2018YFC1504301-03)
详细信息
    作者简介:

    赵 凯(1982- ),男,博士,副教授,zhaokai@njtech.edu.cn

    通讯作者:

    庄海洋(1978- ),男,博士,教授,zhuang7802@163.com

  • 中图分类号: O389;TU411

Characteristics of environmental vibration induced by millisecond-delay blasting in metro tunnel excavation

  • 摘要: 基于地铁隧道毫秒延时爆破环境振动特性现场试验,考虑爆破荷载的不规则特性,采用基于非对称加卸载准则的修正Davidenkov本构模型描述场地土体的动力非线性特性;通过改进Friedlander方程来模拟内源爆炸在圆柱形炮孔表面产生的瞬态空气冲击波;实现了包含毫秒延时爆破荷载输入和有限元-无限元耦合边界的地层-爆源体系三维精细化有限元模型,并与现场实测数据对比验证了该模型方法的有效性。对50 ms延时爆破和齐爆引起的环境振动特性进行了数值模拟,对比发现毫秒延时爆破不仅可以有效降低地表峰值振速,而且可以显著改变地表振动的频谱特性。毫秒延时爆破产生的地表振动频带较集中,对分散爆破振动能量的作用显著,且地表速度响应的主频较高,远离建筑结构自振频率,可显著降低爆破施工引起的邻近建筑物的结构振动水平。
  • 图  1  地铁隧道与文物鼓楼的相对位置

    Figure  1.  Relative position between the metro tunnel and the cultural relic drum tower

    图  2  鼓楼与模拟爆破点的相对位置及地层分布

    Figure  2.  Relative position between the drum tower and the blasting site as well as stratum distribution

    图  3  不规则加卸载准则修正的Davidenkov模型[14]

    Figure  3.  The Davidenkov model modified by the irregular loading-unloading rules[14]

    图  4  爆炸引起的超压时程曲线

    Figure  4.  Time history of overpressure induced by blasting

    图  5  爆炸冲击波至炮孔表面的入射角度

    Figure  5.  Illustration of the incident angle of the blast wave to the surface of the blast hole

    图  6  地层-爆源体系三维有限元模型

    Figure  6.  A three-dimensional finite element model of the ground-blasting-source system

    图  7  实测地表测点峰值振速与模拟结果的对比

    Figure  7.  Comparison of peak vibration velocities between monitored and simulated surface measurement points

    图  8  地表振动速度时程和傅里叶谱对比

    Figure  8.  Comparison of vibration waveforms and Fourier spectra bewteen different monitoring points

    图  9  不同爆破方式下地表振动速度衰减规律对比

    Figure  9.  Comparison of ground vibration attenuation under different blasting modes

    图  10  不同爆破方式下地表测点的频谱对比

    Figure  10.  Comparison of frequency spectra at surface monitoring points under different blasting modes

    表  1  鼓楼固有频率测试结果

    Table  1.   Test results of natural frequencies of the drum tower

    模态阶数固有频率/Hz
    水平向竖直向
    11.372.00
    22.792.98
    下载: 导出CSV

    表  2  土体剖面及Davidenkov模型参数

    Table  2.   Parameters for the soil profiles and the Davidenkov model

    土层描述厚度/m重度/(kN·m−3)剪切波速/(m·s−1)Davidenkov模型参数
    A2B${\gamma _0}$/10−4
    杂填土 1.318.5139.51.050.845.5
    粉质黏土 6.320.2250.41.090.826.2
    砂砾岩12.222.6558.31.300.4021.0
    下载: 导出CSV
  • [1] 钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [2] 陈庆, 王宏图, 胡国忠, 等. 隧道开挖施工的爆破振动监测与控制技术 [J]. 岩土力学, 2005, 26(6): 964–967. DOI: 10.3969/j.issn.1000-7598.2005.06.029.

    CHEN Q, WANG H T, HU G Z, et al. Monitoring and controlling technology for blasting vibration induced by tunnel excavation [J]. Rock and Soil Mechanics, 2005, 26(6): 964–967. DOI: 10.3969/j.issn.1000-7598.2005.06.029.
    [3] VERMA H K, SAMADHIYA N K, SINGH M, et al. Blast induced rock mass damage around tunnels [J]. Tunnelling and Underground Space Technology, 2018, 71: 149–158. DOI: 10.1016/j.tust.2017.08.019.
    [4] LI C J, LI X B. Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 323–338. DOI: 10.1016/j.ijrmms.2018.10.029.
    [5] 管晓明, 傅洪贤, 王梦恕. 隧道近距下穿山坡楼房爆破振动测试研究 [J]. 岩土力学, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.

    GUAN X M, FU H X, WANG M S. Blasting vibration characteristics monitoring of tunnel under-passing hillside buildings in short-distance [J]. Rock and Soil Mechanics, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.
    [6] 李顺波, 杨军, 陈浦, 等. 精确延时控制爆破振动的实验研究 [J]. 爆炸与冲击, 2013, 33(5): 513–518. DOI: 10.11883/1001-1455(2013)05-0513-06.

    LI S B, YANG J, CHEN P, et al. Experimental study of blasting vibration with precisely-controlled delay time [J]. Explosion and Shock Waves, 2013, 33(5): 513–518. DOI: 10.11883/1001-1455(2013)05-0513-06.
    [7] 李夕兵, 凌同华. 单段与多段微差爆破地震的反应谱特征分析 [J]. 岩石力学与工程学报, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.

    LI X B, LING T H. Response spectrum analysis of ground vibration induced by single deck and multi-deck blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2409–2413. DOI: 10.3321/j.issn:1000-6915.2005.14.002.
    [8] KUMAR R, CHOUDHURY D, BHARGAVA K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 341–349. DOI: 10.1016/j.jrmge.2015.10.009.
    [9] 陈士海, 燕永峰, 戚桂峰, 等. 微差爆破降震效果影响因素分析 [J]. 岩土力学, 2011, 32(10): 3003–3008. DOI: 10.3969/j.issn.1000-7598.2011.10.018.

    CHEN S H, YAN Y F, QI G F, et al. Analysis of influence factors of interference vibration reduction of millisecond blasting [J]. Rock and Soil Mechanics, 2011, 32(10): 3003–3008. DOI: 10.3969/j.issn.1000-7598.2011.10.018.
    [10] 龚敏, 吴昊骏, 孟祥栋, 等. 密集建筑物下隧道开挖微振控制爆破方法与振动分析 [J]. 爆炸与冲击, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.

    GONG M, WU H J, MENG X D, et al. A precisely-controlled blasting method and vibration analysis for tunnel excavation under dense buildings [J]. Explosion and Shock Wave, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.
    [11] GUI Y L, ZHAO Z Y, JAYASINGHE L B, et al. Blast wave induced spatial variation of ground vibration considering field geological conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 101: 63–68. DOI: 10.1016/j.ijrmms.2017.11.016.
    [12] AINALIS D, KAUFMANN O, TSHIBANGU J P, et al. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 171–193. DOI: 10.1007/s00603-016-1101-2.
    [13] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证 [J]. 岩土工程学报, 2017, 39(5): 888–895. DOI: 10.11779/CJGE201705013.

    ZHAO D F, RUAN B, CHEN G X, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888–895. DOI: 10.11779/CJGE201705013.
    [14] 胡勤, 戚承志. Ramberg-Osgood土动力非线性模型在ABAQUS软件上的开发及应用 [J]. 岩土力学, 2012, 33(4): 1268–1274. DOI: 10.3969/j.issn.1000-7598.2012.04.046.

    HU Q, QI C Z. Development and application of Ramberg-Osgood soil dynamic nonlinear constitutive model on ABAQUS code [J]. Rock and Soil Mechanics, 2012, 33(4): 1268–1274. DOI: 10.3969/j.issn.1000-7598.2012.04.046.
    [15] OSTRAICH B, SADOT O, LEVINTANT O, et al. A method for transforming a full computation of the effects of a complex-explosion scenario to a simple computation by ConWep [J]. Shock Waves, 2011, 21(2): 101–109. DOI: 10.1007/s00193-011-0300-8.
    [16] 王明洋, 邓宏见, 钱七虎. 岩石中侵彻与爆炸作用的近区问题研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.

    WANG M Y, DENG H J, QIAN Q H. Study on problems of near cavity of penetration and explosion in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.
    [17] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU W B, ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [18] 卢文波, 杨建华, 陈明, 等. 深埋隧洞岩体开挖瞬态卸荷机制及等效数值模拟 [J]. 岩石力学与工程学报, 2011, 30(6): 1089–1096.

    LU W B, YANG J H, CHEN M, et al. Mechanism and equivalent numerical simulation of transient release of excavation load for deep tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1089–1096.
    [19] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [20] YI C P, JOHANSSON D, NYBERG U, et al. Stress wave interaction between two adjacent blast holes [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1803–1812. DOI: 10.1007/s00603-015-0876-x.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  4125
  • HTML全文浏览量:  1599
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 修回日期:  2020-07-02
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回