基于圆弧底试件的动态裂纹扩展及止裂规律研究

郎林 朱哲明 邓帅 牛草原 万端莹 王磊

郎林, 朱哲明, 邓帅, 牛草原, 万端莹, 王磊. 基于圆弧底试件的动态裂纹扩展及止裂规律研究[J]. 爆炸与冲击, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448
引用本文: 郎林, 朱哲明, 邓帅, 牛草原, 万端莹, 王磊. 基于圆弧底试件的动态裂纹扩展及止裂规律研究[J]. 爆炸与冲击, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448
LANG Lin, ZHU Zheming, DENG Shuai, NIU Caoyuan, WAN Duanying, WANG Lei. Dynamic crack growth and crack arrest law based on arc bottom specimen[J]. Explosion And Shock Waves, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448
Citation: LANG Lin, ZHU Zheming, DENG Shuai, NIU Caoyuan, WAN Duanying, WANG Lei. Dynamic crack growth and crack arrest law based on arc bottom specimen[J]. Explosion And Shock Waves, 2020, 40(9): 093201. doi: 10.11883/bzycj-2019-0448

基于圆弧底试件的动态裂纹扩展及止裂规律研究

doi: 10.11883/bzycj-2019-0448
基金项目: 国家自然科学基金(11672194,U19A2098);四川省科技计划(2018JZ0036)
详细信息
    作者简介:

    郎 林(1984- ),男,博士研究生,高级工程师,langlinww@163.com

    通讯作者:

    朱哲明(1965- ),男,博士,教授,zhemingzhu@hotmail.com

  • 中图分类号: O346.1; TU45

Dynamic crack growth and crack arrest law based on arc bottom specimen

  • 摘要: 为了研究脆性材料的动态裂纹扩展及止裂规律,设计了一种带圆弧形底边的梯形开口边裂纹(trapezoidal opening crack with arc bottom,TOCAB)构型的试件。在落锤冲击设备加载下,对圆心角为0°、60°、90°和120°的TOCAB试件进行了冲击实验,并采用裂纹扩展计(crack propagation gauge,CPG)监测裂纹起裂和扩展时间,从而获得裂纹扩展速度。采用有限差分软件AUTODYN对落锤冲击设备和试件进行数值模拟,研究了裂纹的动态扩展过程及止裂规律。还基于实验和数值方法,计算了裂纹的临界动态应力强度因子。实验和数值结果均表明:3种弧度的TOCAB试件都可以实现运动裂纹止裂,该构型可用于研究动态裂纹止裂问题;数值计算的裂纹扩展路径与实验结果基本一致,验证了数值模型的有效性;裂纹起裂和止裂时刻的临界动态应力强度因子大于裂纹动态扩展过程中的临界动态应力强度因子。
  • 图  1  试件几何尺寸和裂纹止裂机理

    Figure  1.  Dimension of sample and crack arrest principle

    图  2  4种用于研究动态断裂行为的大尺寸试件的构型

    Figure  2.  Four samples were used to measure dynamic fracture toughness

    图  3  落锤装置和数据采集系统

    Figure  3.  Drop hammer device and data acquisition system

    图  4  由入射杆和透射杆测量的的荷载曲线

    Figure  4.  Loading curves measured from incident barand transmission bar

    图  5  电压信号及其对时间的导数

    Figure  5.  Voltage signal history and its derivative with respect to time

    图  6  圆弧底试件的反射压缩波

    Figure  6.  Reflected compression wave of arc bottom specimen

    图  7  裂纹尖端位置和裂纹扩展速度

    Figure  7.  Crack tip locations and crack growth velocities

    图  8  落锤冲击装置和试件的网格划分

    Figure  8.  Grid division diagram of drop hammer impact device and specimen

    图  9  裂纹扩展路径的实验结果和数值模拟结果

    Figure  9.  Experimental results and numerical simulation results of crack growth paths

    图  10  试件最大水平压应力沿裂纹路径的变化

    Figure  10.  Maximum horizontal compressive stressesalong crack paths of specimens

    图  11  裂纹长度随加载率的变化

    Figure  11.  Crack lengths varying with loading rates

    图  12  有限元模型网格划分

    Figure  12.  Finite element model meshing

    图  13  在裂纹起始和扩展过程中临界DSIF的计算方法

    Figure  13.  Calculation method of critical DSIF during crack initiation and propagation

    图  14  临界动态应力强度因子、裂纹速度与瑞利波波速之比与裂纹长度的关系

    Figure  14.  Critical dynamic stress intensity factors, ratios of crack velocity to Rayleigh wave velocity varying with crack lengths

  • [1] YANG R S, DING C X, YANG L Y, et al. Behavior and law of crack propagation in the dynamic-static superimposed stress field [J]. Journal of Testing and Evaluation, 2018, 46(6): 2540–2548. DOI: 10.1520/JTE20170271.
    [2] 张盛, 鲁义强, 王启智. 用P-CCNBD试样测定岩石动态扩展韧度和观察动态止裂现象 [J]. 岩土力学, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.

    ZHANG S, LU Y Q, WANG Q Z. Measurement of dynamic fracture propagation toughness of rock and observation of dynamic arrest phenomenon using P-CCNBD specimens [J]. Rock and Soil Mechanics, 2017, 38(11): 3095–3105. DOI: 10.16285/j.rsm.2017.11.003.
    [3] 李炼, 杨丽萍, 曹富, 等. 冲击加载下的砂岩动态断裂全过程的实验和分析 [J]. 煤炭学报, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.

    LI L, YANG L P, CAO F, et al. Complete dynamic fracture process of sandstone under impact loading: experiment and analysis [J]. Journal of China Coal Society, 2016, 41(8): 1912–1922. DOI: 10.13225/j.cnki.jccs.2016.0161.
    [4] VULIĆ N, JECIĆ S, GRUBIŠIĆ V. Validation of crack arrest technique by numerical modelling [J]. International Journal of Fatigue, 1997, 19(4): 283–291. DOI: 10.1016/S0142-1123(97)00008-X.
    [5] SONG P S, SHIEH Y L. Stop drilling procedure for fatigue life improvement [J]. International Journal of Fatigue, 2004, 26(12): 1333–1339. DOI: 10.1016/j.ijfatigue.2004.04.009.
    [6] WU H, IMAD A, BENSEDDIQ N, et al. On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method [J]. International Journal of Fatigue, 2010, 32(4): 670–677. DOI: 10.1016/j.ijfatigue.2009.09.011.
    [7] MURDANI A, MAKABE C, SAIMOTO A, et al. A crack-growth arresting technique in aluminum alloy [J]. Engineering Failure Analysis, 2008, 15(4): 302–310. DOI: 10.1016/j.engfailanal.2007.02.005.
    [8] NATECHE T, MELIANI M H, MATVIENKO Y G, et al. Drilling repair index (DRI) based on two-parameter fracture mechanics for crack arrest holes [J]. Engineering Failure Analysis, 2016, 59: 99–110. DOI: 10.1016/j.engfailanal.2015.08.035.
    [9] CHEN N Z. A stop-hole method for marine and offshore structures [J]. International Journal of Fatigue, 2016, 88: 49–57. DOI: 10.1016/j.ijfatigue.2016.03.010.
    [10] 李盟, 朱哲明, 肖定军, 等. 煤矿岩巷爆破掘进过程中周边眼对裂纹扩展止裂机理 [J]. 煤炭学报, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.

    LI M, ZHU Z M, XIAO D J, et al. Mechanism of crack arrest by peripheral holes during mine rock roadway excavation under blasting [J]. Journal of China Coal Society, 2017, 42(7): 1691–1699. DOI: 10.13225/j.cnki.jccs.2016.1226.
    [11] 杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与Ⅰ型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.

    YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode Ⅰ moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
    [12] 张财贵, 曹富, 李炼, 等. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度 [J]. 力学学报, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.

    ZHANG C G, CAO F, LI L, et al. Determination of dynamic fracture initiation, propagation, and arrest toughness of rock using SCDC specimen [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624–635. DOI: 10.6052/0459-1879-15-349.
    [13] 王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.

    WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
    [14] WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [15] GRÉGOIRE D, MAIGRE H, COMBESCURE A. New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials [J]. International Journal of Solids and Structures, 2009, 46(18−19): 3480–3491. DOI: 10.1016/j.ijsolstr.2009.06.003.
    [16] 汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.

    WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
    [17] LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
    [18] 朱婷, 胡德安, 王毅刚. PMMA材料裂纹动态扩展及止裂研究 [J]. 应用力学学报, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.

    ZHU T, HU D A, WANG Y G. Study on dynamic crack propagation and arrest of PMMA materials [J]. Chinese Journal of Applied Mechanics, 2017, 34(2): 230–236. DOI: 10.11776/cjam.34.02.B017.
    [19] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002.
    [20] ZHU Z M. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6): 1088–1096. DOI: 10.1016/j.ijrmms.2009.05.009.
    [21] ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
    [22] 董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.

    DONG Y Q, ZHU Z M, WANG M, et al. Mode I crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
    [23] DAI F, XIA K W, TANG L Z. Rate dependence of the flexural tensile strength of Laurentian granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469–475. DOI: 10.1016/j.ijrmms.2009.05.001.
    [24] PERSSON A. CM1−a simple model for the dynamic deformation and failure properties of brittle materials [C] // CARLSSON R, JOHANSSON T, KAHLMAN L. 4th International Symposium on Ceramic Materials and Components for Engines. Dordrecht: Springer, 1992. DOI: 10.1007/978-94-011-2882-7_106.
    [25] WONG L N Y, LI H Q. Numerical study on coalescence of two pre-existing coplanar flaws in rock [J]. International Journal of Solids and Structures, 2013, 50(22−23): 3685–3706. DOI: 10.1016/j.ijsolstr.2013.07.010.
    [26] WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239–249. DOI: 10.1016/j.ijrmms.2008.03.006.
    [27] BROOKS Z, ULM F J, EINSTEIN H H. Role of microstructure size in fracture process zone development of marble [C] // Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association, 2012: 1748−1757.
    [28] Century Dynamics Inc. AUTODYN theory manual [M]. Pittsburgh: Century Dynamics Inc, 2005.
    [29] ZEHNDER A T. Fracture mechanics [M]. New York: Springer, 2012.
    [30] CHEN L S, KUANG J H. A modified linear extrapolation formula for determination of stress intensity factors [J]. International Journal of Fracture, 1992, 54(1): R3–R8. DOI: 10.1007/BF00040859.
    [31] FREUND L B. Dynamic fracture mechanics [M]. New York: Cambridge University Press, 1990.
  • 加载中
图(14)
计量
  • 文章访问数:  3148
  • HTML全文浏览量:  1023
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-23
  • 修回日期:  2020-02-24
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回